Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T05:41:06.773Z Has data issue: false hasContentIssue false

A 4000 Mʘ supermassive star as a possible source for the W1 kilomaser

Published online by Cambridge University Press:  07 February 2024

Katarzyna Nowak*
Affiliation:
Centre for Astrophysics Research, Department of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK.
Martin G. H. Krause
Affiliation:
Centre for Astrophysics Research, Department of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supermassive stars have been proposed as the solution to a number of longstanding problems in globular cluster formation. The hypothetical stars have been suggested as potential polluters responsible for the observed chemical peculiarities within those clusters. In recent hydrodynamic simulations, we have demonstrated that accretion discs around such stars are stable even with large stellar accretion and flyby rates and produce H2O kilomasers. We propose that the W1 kilomaser, associated with a super star cluster in the starburst galaxy NGC 253, may arise in an accretion disc around a supermassive star with a mass of around 4000 Mʘ.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Anderson, J., in van Leeuwen F., Hughes J. D., Piotto G., 2002, ASP-CS, Vol. 265Google Scholar
Bastian, N., Lardo, C., 2018, ARAA, 56, 83 10.1146/annurev-astro-081817-051839CrossRefGoogle Scholar
Brogan, C., Johnson, K., Darling, J., 2010, ApJ, 716, L51 10.1088/2041-8205/716/1/L51CrossRefGoogle Scholar
Darling, J., Brogan, C., Johnson, K., 2008, ApJ, 685, L39 10.1086/592294CrossRefGoogle Scholar
Denissenkov, P. A., Denisenkova, S. N., 1990, Soviet Astron., 16, 275 Google Scholar
Denissenkov, P. A., Hartwick, F. D. A., 2014, MNRAS, 437, L21 10.1093/mnrasl/slt133CrossRefGoogle Scholar
Ellingsen, S. P., Voronkov, M. A., Breen, S. L., Caswell, J. L., Sobolev, A. M., 2018, MNRAS, 480, 4851 Google Scholar
Gieles, M. et al. 2018, MNRAS, 478, 2461 10.1093/mnras/sty1059CrossRefGoogle Scholar
Gorski, M. D. et al. 2019, MNRAS, 483, 5434 10.1093/mnras/sty3077CrossRefGoogle Scholar
Gratton, R. G., Carretta, E., Bragaglia, A., 2012, A&AR, 20, 50 Google Scholar
Gwinn, C. R., Moran, J. M., Reid, M. J., 1992, ApJ, 393, 149 10.1086/171493CrossRefGoogle Scholar
Hollyhead, K. et al. 2015, MNRAS, 449, 1106 10.1093/mnras/stv331CrossRefGoogle Scholar
Krause, M. et al. 2020, Space Sci. Revs, 216, 64 10.1007/s11214-020-00689-4CrossRefGoogle Scholar
McGrath, E. J., Goss, W. M., De Pree, C. G., 2004, ApJS, 155, 577 10.1086/424486CrossRefGoogle Scholar
Norris, J. E., 2004, ApJ, 612, L25 10.1086/423986CrossRefGoogle Scholar
Nowak, K., Krause, M. G H., Schaerer, D., 2022, MNRAS, 516, 5507 10.1093/mnras/stac2547CrossRefGoogle Scholar
Pesce, D. W. et al. 2015, ApJ, 810, 65 10.1088/0004-637X/810/1/65CrossRefGoogle Scholar
Prantzos, N., Charbonnel, C., Iliadis, C., 2017, A&A, 608, A28 Google Scholar
Renzini, A., Marino, A. F., Milone, A. P., 2022, MNRAS, 513, 2111 10.1093/mnras/stac973CrossRefGoogle Scholar
Sandage, A., Wildey, R. 1967, ApJ, 150, 469 10.1086/149350CrossRefGoogle Scholar
Zhang, B., Reid, M. J., Menten, K. M., Zheng, X. W., Brunthaler, A., Dame, T. M., Xu, Y., 2013, ApJ, 775, 79 10.1088/0004-637X/775/1/79CrossRefGoogle Scholar