Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T19:07:07.513Z Has data issue: false hasContentIssue false

3-D views of the expanding CME: from the Sun to 1AU

Published online by Cambridge University Press:  05 March 2015

Alexis P. Rouillard*
Affiliation:
Université de Toulouse; UPS-OMP; IRAP; Toulouse, France CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Three-dimensional information on Coronal Mass Ejections (CMEs) can be obtained from a wide range of in-situ measurements and remote-sensing techniques. Extreme ultraviolet (EUV) and white-light imaging sensed from several vantage points can be used to infer the 3-D geometry of the different parts that constitute a CME. High-resolution and high-cadence coronal imaging provides detailed information on the formation and release phase of a magnetic flux rope, the lateral expansion of the CME and the reconfiguration of the corona associated with the effects of pressure variations and reconnection. The evolution of the CME in the interplanetary medium and the connection of its various substructures with in-situ measurements can be obtained from multi-point heliospheric imaging.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Berger, T. E., Liu, W., & Low, B. C. 2012, ApJ 758, L37Google Scholar
Chen, J., Howard, R. A., Brueckner, G. E., et al. 1997, ApJ 490, L191Google Scholar
Cheng, X., Zhang, J., Olmedo, O., Vourlidas, A., Ding, M. D., & Liu, Y. 2012, ApJ 745, L5CrossRefGoogle Scholar
Gibson, S., Foster, D., Burkepile, J., de Toma, G., & Stanger, A. 2006, ApJ 641, 590Google Scholar
Gibson, S. E., Kucera, T. A., Rastawicki, D., Dove, J., de Toma, G., et al. 2010, ApJ 724, 1133Google Scholar
Hundhausen, A. 1972, Springer, 1st EditionGoogle Scholar
Illing, R. M. E. & Hundhausen, A. J. 1985, Solar Phys. 90, 275Google Scholar
Lepri, S. T. & Zurbuchen, T. H. 2010, ApJ 723, L22Google Scholar
Möstl, C., Farrugia, C. J., Temmer, M., et al. 2009, ApJ 705, L180Google Scholar
Munro, R. H., Gosling, J. T., Hildner, , et al. 1979, Solar Phys. 61, 201CrossRefGoogle Scholar
Patsourakos, S. & Vourlidas, A. 2009, ApJ 700, L182Google Scholar
Patsourakos, S., Vourlidas, A., & Kliem, B. 2010a, A&A 552, id.A100Google Scholar
Patsourakos, S., Vourlidas, A., & Stenborg, G. 2010b, ApJ 724, L188Google Scholar
Riley, P., Lionello, R., & Mikić, , Linker, J. 2008, ApJ 672, 1221CrossRefGoogle Scholar
Rouillard, A. P., Davies, J. A., Forsyth, R. J., et al. 2009, J. Geophys. Res. 114, A07106Google Scholar
Rouillard, A. P., Odstrcil, D., Sheeley, N. R., et al. 2012, ApJ 735, id7Google Scholar
Rouillard, A. P., Sheeley, N. R., Tylka, A., et al.. 2012, J. Geophys. Res. 114, A07106Google Scholar
Rouillard, A. P., Sheeley, N. R., Tylka, A., Vourlidas, A., & Ng, C. K. 2013, ApJ, In PreparationGoogle Scholar
Sheeley, N. R. & Wang, Y.-M. 2007, ApJ 655, 1142Google Scholar
Thernisien, A., Vourlidas, A., & Howard, R. A. 2009, ApJ 256, 111Google Scholar
Thernisien, A., Vourlidas, A., & Howard, R. A. 2011, JASTP 73, 1156Google Scholar
Török, T. & Kliem, B. 2005, ApJ 630, L97Google Scholar
Vourlidas, A., Lynch, B. J., Howard, R. A., & Li, Y. 2012, Solar Phys., Online FirstGoogle Scholar
Wang, Y.-M. & Stenborg, G. 2010, ApJ 719, L181Google Scholar
Wood, B. E., Howard, R. A., & Socker, D. G. 2010, ApJ 715, 1524Google Scholar
Wood, B. E., Rouillard, A. P., Mstl, C.et al. 2012, Solar Phys. Online First.Google Scholar
Zhang, Y. & Zhang, J. 2007, ApJ 665, 1438Google Scholar