Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T04:28:03.275Z Has data issue: false hasContentIssue false

3-D SPH Simulations of Colliding Winds in η Carinae

Published online by Cambridge University Press:  01 December 2007

Atsuo T. Okazaki
Affiliation:
Faculty of Engineering, Hokkai-Gakuen University, Toyohira-ku, Sapporo 062-8605, Japan email: [email protected]
Stanley P. Owocki
Affiliation:
Bartol Research Institute, University of Delaware, Newark, 19716 DE, USA email: [email protected]
Christopher M. P. Russell
Affiliation:
Department of Physics and Astronomy, University of Delaware, Newark, 19716 DE, USA email: [email protected]
Michael F. Corcoran
Affiliation:
Universities Space Research Association, Goddard Space Flight Center, Greenbelt, MD 20771, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study colliding winds in the superluminous binary η Carinae by performing three-dimensional, Smoothed Particle Hydrodynamics (SPH) simulations. For simplicity, we assume both winds to be isothermal. We also assume that wind particles coast without any net external forces. We find that the lower density, faster wind from the secondary carves out a spiral cavity in the higher density, slower wind from the primary. Because of the phase-dependent orbital motion, the cavity is very thin on the periastron side, whereas it occupies a large volume on the apastron side. The model X-ray light curve using the simulated density structure fits very well with the observed light curve for a viewing angle of i = 54° and φ = 36°, where i is the inclination angle and φ is the azimuth from apastron.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Antokhin, I. I., Owocki, S. P., & Brown, J. C. 2004, ApJ, 611, 434CrossRefGoogle Scholar
Bate, M. R., Bonnell, I. A., & Price, N. M. 1995, MNRAS, 285, 33CrossRefGoogle Scholar
Benz, W. 1990, in: Buchler, J. R. (ed.), The Numerical Modelling of Nonlinear Stellar Pulsations (Dordrecht: Kluwer), p. 269CrossRefGoogle Scholar
Benz, W., Bowers, R. L., Cameron, A. G. W., & Press, W. H. 1990, ApJ, 348, 647CrossRefGoogle Scholar
Corcoran, M. F., Ishibashi, K., Swank, J. H., & Petre, R. 2001, ApJ, 547, 1034CrossRefGoogle Scholar
Corcoran, M. F. 2005, AJ, 129, 2018CrossRefGoogle Scholar
Damineli, A. 1996, ApJ, 460, L49CrossRefGoogle Scholar
Hillier, D. J., Davidson, K., Ishibashi, K., & Gull, T. 2001, ApJ, 553, 837CrossRefGoogle Scholar
Ishibashi, K., Corcoran, M. F., Davidson, , et al. 1999, ApJ, 524, 983CrossRefGoogle Scholar
Okazaki, A. T., Bate, M. R., Ogilvie, G. I, & Pringle, J. E. 2002, MNRAS, 337, 967CrossRefGoogle Scholar
Okazaki, A. T., Owocki, S. P., Russell, C. M. P., & Corcoran, M. F. 2008, MNRAS, in pressGoogle Scholar