Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T22:09:30.978Z Has data issue: false hasContentIssue false

3D modeling of stellar atmospheres and the impact on the understanding of the reliability of elemental abundances in stars as tracers of galactic chemical evolution

Published online by Cambridge University Press:  06 January 2014

H.-G. Ludwig
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, D-69117 Heidelberg, Germany GEPI Observatoire de Paris, CNRS, Université Paris Diderot, F-92195 Meudon Cedex, France
M. Steffen
Affiliation:
Leibniz Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany
P. Bonifacio
Affiliation:
GEPI Observatoire de Paris, CNRS, Université Paris Diderot, F-92195 Meudon Cedex, France
E. Caffau
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, D-69117 Heidelberg, Germany GEPI Observatoire de Paris, CNRS, Université Paris Diderot, F-92195 Meudon Cedex, France
A. Kučinskas
Affiliation:
Vilnius University Institute of Theoretical Physics and Astronomy, A. Goštauto 12, Vilnius LT-01108, Lithuania
B. Freytag
Affiliation:
Centre de Recherche Astrophysique de Lyon, UMR 5574, CNRS, Université de Lyon, École Normale Supérieure de Lyon, 46 allée d'Italie, F-69364 Lyon Cedex 07, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a critical review of the construction of 3D model atmospheres with emphasis on modeling challenges. We discuss the basic physical processes which give rise to the effects which set 3D models apart from 1D standard models. We consider elemental abundances derived from molecular features, and the determination of the microturbulence with 3D models. The examples serve as illustration of the limitations inherent to 1D, however, also to 3D modeling. We find that 3D models can provide constraints on the microturbulence parameter, and predict substantial corrections for abundances derived from molecular species.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Allende Prieto, C., Koesterke, L., Ludwig, H.-G., Freytag, B., & Caffau, E., 2013, A&A, 550, A103Google Scholar
Asplund, M., Grevesse, N., Sauval, A. J., Allende Prieto, C., & Kiselman, D., 2004, A&A, 417, 751Google Scholar
Asplund, M., Lambert, D. L., Nissen, P. E., Primas, F., & Smith, V. V., 2006, ApJ, 644, 229Google Scholar
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P., 2009, ARAA, 47, 481Google Scholar
Beeck, B., Collet, R., Steffen, M., Asplund, M., Cameron, R. H., Freytag, B., Hayek, W., Ludwig, H.-G., & Schüssler, M., 2012, A&A, 539, A121Google Scholar
Bonifacio, P., Caffau, E., Ludwig, H.-G., Spite, M., Plez, B., Steffen, M., & Spite, F., 2013, MemSAIt, in pressGoogle Scholar
Caffau, E., Ludwig, H.-G., Steffen, M., Ayres, T. R., Bonifacio, P., Cayrel, R., Freytag, B. & Plez, B, 2008, A&A, 488, 1031Google Scholar
Caffau, E., Ludwig, H.-G., Steffen, M., Freytag, B., & Bonifacio, P., 2011a, Solar Phys., 268, 255CrossRefGoogle Scholar
Caffau, E., Bonifacio, P., François, P., Sbordone, L., Monaco, L., Spite, M., Spite, F., Ludwig, H.-G., Cayrel, R., Zaggia, S., Hammer, F., Randich, S., Molaro, P., & Hill, V., 2011b, Nature, 477, 67Google Scholar
Cayrel, R., Steffen, M., Chand, H., Bonifacio, P., Spite, M., Spite, F., Petitjean, P., Ludwig, H.-G., & Caffau, E., 2007, A&A, 473, L37Google Scholar
Collet, R., Asplund, M., & Trampedach, R., 2007, A&A, 469, 687Google Scholar
Edvardsson, B., Andersen, J., Gustafsson, B., Lambert, D. L., Nissen, P. E., & Tomkin, J., 1993, A&A, 275, 101Google Scholar
Freytag, B., Steffen, M., Ludwig, H.-G., Wedemeyer-Böhm, S., Schaffenberger, W., & Steiner, O., 2012, J. Comp. Phys., 231, 919Google Scholar
GonzálezHernández, J. I. Hernández, J. I., Bonifacio, P., Ludwig, H.-G., Caffau, E., Behara, N. T., & Freytag, B., 2010, A&A, 519, A46Google Scholar
Griffin, R. E. M, & Holweger, H., 1988, A&A, 214, 249Google Scholar
Magic, Z., Collet, R., Asplund, M., Trampedach, R., Hayek, W., Chiavassa, A., Stein, R. F. & Nordlund, Å., 2013, A&A, in pressGoogle Scholar
Ivanauskas, A., Kucinskas, A., Ludwig, H.-G., & Caffau, E., 2010, in: Proceedings of the 11th Symposium on Nuclei in the Cosmos, published onlineGoogle Scholar
Lind, K., Melendez, J., Asplund, M., Collet, R., & Magic, Z., 2013, A&A, 554, A96Google Scholar
Ludwig, H.-G., Caffau, E., Steffen, M., Freytag, B., Bonifacio, P., & Kučinskas, A., 2009, MemSAIt, 80, 711Google Scholar
Spite, M., Andrievsky, S. M., Spite, F., Caffau, E., Korotin, S. A., Bonifacio, P., Ludwig, H.-G., François, P., & Cayrel, R., 2012, A&A, 541, A143Google Scholar
Steffen, M., Cayrel, R., Caffau, E., Bonifacio, P., Ludwig, H.-G., & Spite, M., 2012, MemSAIt, 22, 152Google Scholar
Stein, R. F. & Nordlund, Å., 1998, ApJ, 499, 914Google Scholar
Trampedach, R., Asplund, M., Collet, R., Nordlund, Å., & Stein, R. F., 2013, ApJ, 769, 18Google Scholar