Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T22:46:09.890Z Has data issue: false hasContentIssue false

3D MHD simulations of subsurface convection in OB stars

Published online by Cambridge University Press:  12 July 2011

Matteo Cantiello
Affiliation:
Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, D–53121 Bonn, Germany email: [email protected]
Jonathan Braithwaite
Affiliation:
Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, D–53121 Bonn, Germany email: [email protected]
Axel Brandenburg
Affiliation:
NORDITA, AlbaNova University Center, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden Department of Astronomy, AlbaNova University Center, Stockholm University, SE–10691 Stockholm, Sweden
Fabio Del Sordo
Affiliation:
NORDITA, AlbaNova University Center, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden Department of Astronomy, AlbaNova University Center, Stockholm University, SE–10691 Stockholm, Sweden
Petri Käpylä
Affiliation:
NORDITA, AlbaNova University Center, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden Department of Physics, Gustaf Hällströmin katu 2a (PO Box 64), FI-00014, University of Helsinki, Finland
Norbert Langer
Affiliation:
Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, D–53121 Bonn, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

During their main sequence evolution, massive stars can develop convective regions very close to their surface. These regions are caused by an opacity peak associated with iron ionization. Cantiello et al. (2009) found a possible connection between the presence of sub-photospheric convective motions and small scale stochastic velocities in the photosphere of early-type stars. This supports a physical mechanism where microturbulence is caused by waves that are triggered by subsurface convection zones. They further suggest that clumping in the inner parts of the winds of OB stars could be related to subsurface convection, and that the convective layers may also be responsible for stochastic excitation of non-radial pulsations. Furthermore, magnetic fields produced in the iron convection zone could appear at the surface of such massive stars. Therefore subsurface convection could be responsible for the occurrence of observable phenomena such as line profile variability and discrete absorption components. These phenomena have been observed for decades, but still evade a clear theoretical explanation. Here we present preliminary results from 3D MHD simulations of such subsurface convection.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Belkacem, K., Samadi, R., Goupil, M.-J., Lefèvre, L. et al. 2009, Science, 324, 1540CrossRefGoogle Scholar
Brandenburg, A., Chan, K. L., Nordlund, Å., & Stein, R. F. 2005, AN, 326, 681Google Scholar
Cantiello, M., Langer, N., Brott, I., de Koter, A. et al. 2009, A&A, 499, 279Google Scholar
Degroote, P., Briquet, M., Auvergne, M., Simón-Díaz, S. et al. 2010, A&A, 519, A38Google Scholar
Eichler, D., Bar Shalom, A., & Oreg, J. 1995, ApJ, 448, 858CrossRefGoogle Scholar
Evans, C., Smartt, S., Lennon, D., Dufton, P. et al. 2005, The Messenger, 122, 36Google Scholar
Fraser, M., Dufton, P. L., Hunter, I., & Ryans, R. S. I. 2010, MNRAS, 404, 1306Google Scholar
Goldreich, P. & Kumar, P. 1990, ApJ, 363, 694CrossRefGoogle Scholar
Heger, A. & Langer, N. 1996, A&A, 315, 421Google Scholar
Kaper, L. & Henrichs, H. F. 1994, Ap&SS, 221, 115Google Scholar
Käpylä, P. J., Korpi, M. J., & Brandenburg, A. 2008, A&A, 491, 353Google Scholar
Kato, M. & Iben, I. Jr. 1992, ApJ, 394, 305CrossRefGoogle Scholar
Lépine, S. & Moffat, A. F. J. 1999, ApJ, 514, 909CrossRefGoogle Scholar
Marchenko, S. V., Moffat, A. F. J., St-Louis, N., & Fullerton, A. W. 2006, ApJ (Letters), 639, L75CrossRefGoogle Scholar