Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T16:50:38.837Z Has data issue: false hasContentIssue false

3D Magnetic Reconnection

Published online by Cambridge University Press:  12 August 2011

Clare E. Parnell
Affiliation:
School of Mathematics & Statistics, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK email: [email protected]
Rhona C. Maclean
Affiliation:
School of Mathematics & Statistics, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK email: [email protected]
Andrew L. Haynes
Affiliation:
School of Mathematics & Statistics, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK email: [email protected]
Klaus Galsgaard
Affiliation:
Niels Bohr Institute, Julie Maries vej 30, 2100 Copenhagen 0, Denmark
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Magnetic reconnection is an important process that is prevalent in a wide range of astrophysical bodies. It is the mechanism that permits magnetic fields to relax to a lower energy state through the global restructuring of the magnetic field and is thus associated with a range of dynamic phenomena such as solar flares and CMEs. The characteristics of three-dimensional reconnection are reviewed revealing how much more diverse it is than reconnection in two dimensions. For instance, three-dimensional reconnection can occur both in the vicinity of null points, as well as in the absence of them. It occurs continuously and continually throughout a diffusion volume, as opposed to at a single point, as it does in two dimensions. This means that in three-dimensions field lines do not reconnect in pairs of lines making the visualisation and interpretation of three-dimensional reconnection difficult.

By considering particular numerical 3D magnetohydrodynamic models of reconnection, we consider how magnetic reconnection can lead to complex magnetic topologies and current sheet formation. Indeed, it has been found that even simple interactions, such as the emergence of a flux tube, can naturally give rise to ‘turbulent-like’ reconnection regions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Albright, B. J. 1999, Phys. Plasmas, 6, 4222Google Scholar
Archontis, V., Moreno-Insertis, F., Galsgaard, K., & Hood, A. W. 2005, Astrophys. J., 635, 1299Google Scholar
Aulanier, G., Golub, L., DeLuca, E. E., et al. 2007, Science, 318, 1588Google Scholar
Aulanier, G., Pariat, E., & Démoulin, P. 2005, “Astron. Astrophys.”, 444, 961Google Scholar
Aulanier, G., Pariat, E., Démoulin, P., & Devore, C. R. 2006, Solar Phys., 238, 347Google Scholar
Baker, D., van Driel-Gesztelyi, L., Mandrini, C. H., Démoulin, P., & Murray, M. J. 2009, “Astrophys. J.”, 705, 926Google Scholar
Biskamp, D. 2000, Magnetic Reconnection in Plasmas (Cambridge, UK: Cambridge University Press)CrossRefGoogle Scholar
Browning, P. K., Gerrard, C., Hood, A. W., Kevis, R. & van der Linden, R. A. M. 2008, Astron. Astrophys., 485, 837Google Scholar
Cargill, P., Parnell, C., Browning, P., de Moortel, I., & Hood, A. 2010, Astronomy and Geophysics, 51, 030000Google Scholar
Démoulin, P., Henoux, J. C., Priest, E. R., & Mandrini, C. H. 1996, Astron. Astrophys., 308, 643Google Scholar
Dorelli, J. C.Bhattacharjee, A. 2008, Physics of Plasmas, 15, 056504Google Scholar
Fukao, S., Ugai, M., & Tsuda, T. 1975, Report Ionosphere Space Research Japan, 29, 133Google Scholar
Galsgaard, K., Archontis, V., Moreno-Insertis, F., & Hood, A. W. 2007, Astrophys. J., 666, 516Google Scholar
Galsgaard, K.Nordlund, Å. 1996, J. Geophys. Res., 101, 13445Google Scholar
Galsgaard, K.Nordlund, Å. 1997, J. Geophys. Res., 102, 231Google Scholar
Hagenaar, H. J., Schrijver, C. J., & Title, A. M. 2003, Astrophys. J., 584, 1107Google Scholar
Haynes, A. L.Parnell, C. E. 2010, Physics of Plasmas, 17, 092903Google Scholar
Haynes, A. L., Parnell, C. E., Galsgaard, K., & Priest, E. R. 2007, Royal Society of London Proceedings Series A, 463, 1097Google Scholar
Hesse, M. 1995, in Reviews in Modern Astronomy, ed. Klare, G., Reviews in Modern Astronomy, 8, 323Google Scholar
Hesse, M.Schindler, K. 1988, J. Geophys. Res., 93, 5559Google Scholar
Hood, A. W., Browning, P. K. & van der Linden, R. A. M. 2009, Astron. Astrophys., in pressGoogle Scholar
Hornig, G., Priest, E. R. 2003, Phys. Plasma, 10, 2712Google Scholar
Lau, Y.Finn, J. M. 1990, Astrophys. J., 350, 672Google Scholar
Longbottom, A. W., Rickard, G. J., Craig, I. J. D., & Sneyd, A. D. 1998, Astrophys. J., 500, 471Google Scholar
Maclean, R. C., Parnell, C. E., & Galsgaard, K. 2009, Solar Phys., 260, 299Google Scholar
Masson, S., Pariat, E., Aulanier, G., & Schrijver, C. J. 2009, Astrophys. J., 700, 559Google Scholar
Pariat, E., Masson, S., & Aulanier, G. 2009, “Astrophys. J.”, 701, 1911Google Scholar
Parker, E. N. 1991, in Mechanisms of Chromospheric and Coronal Heating, ed. Ulmschneider, P., Priest, E. R., & Rosner, R., 615Google Scholar
Parnell, C. E., DeForest, C. E., Hagenaar, H. J., et al. 2009, Astrophys. J., 698, 75Google Scholar
Parnell, C. E., Deforest, C. E., Hagenaar, H. J., Lamb, D. A., & Welsch, B. T. 2008, in First Results From Hinode, eds. Matthews, S. A., Davis, J. M., & Harra, L. K., Astronomical Society of the Pacific Conference Series, 397, 31Google Scholar
Parnell, C. E., Haynes, A. L., Galsgaard, K. 2010a, J. Geophys. Res. (Space Physics), 115, 2102Google Scholar
Parnell, C. E., Maclean, R. C., Haynes, A. L. 2010b, Astrophys. J. Letts., 725, L214Google Scholar
Parnell, C. E., Smith, J. M., Neukirch, T., & Priest, E. R. 1996, Physics of Plasmas, 3, 759Google Scholar
Pontin, D. I. 2011, “Adv. Space Res.”Google Scholar
Pontin, D. I., Bhattacharjee, A., & Galsgaard, K. 2007, Physics of Plasmas, 14, 052106Google Scholar
Pontin, D. I.Craig, I. J. D. 2005, Physics of Plasmas, 12, 072112Google Scholar
Pontin, D. I., Hornig, G., & Priest, E. R. 2004, Geophysical and Astrophysical Fluid Dynamics, 98, 407Google Scholar
Pontin, D. I., Hornig, G., & Priest, E. R. 2005, Geophys. Astrophys. Fluid Dynanics, 99, 77Google Scholar
Pontin, D. I., Wilmot-Smith, A. L., Hornig, G., & Galsgaard, K. 2011, Astron. Astrophys., 525, A57+Google Scholar
Priest, E. R.Démoulin, P. 1995, J. Geophys. Res., 100, 23443Google Scholar
Priest, E. R.Forbes, T. G. 2000, Magnetic reconnection (Cambridge, UK: Cambridge University Press)Google Scholar
Priest, E. R., Hornig, G., & Pontin, D. I. 2003, J. Geophys. Res., 108, 1285Google Scholar
Priest, E. R.Pontin, D. I. 2009, Physics of Plasmas, 16, 122101Google Scholar
Rickard, G. J.Titov, V. S. 1996, Astrophys. J., 472, 840Google Scholar
Schindler, K., Hesse, M., & Birn, J. 1988, J. Geophys. Res., 93, 5547Google Scholar
Thornton, L. M.Parnell, C. E. 2010, Solar Phys., 220Google Scholar
Titov, V. S. 2007, Astrophys. J., 660, 863Google Scholar
Titov, V. S., Forbes, T. G., Priest, E. R., Mikić, Z., & Linker, J. A. 2009, “Astrophys. J.”, 693, 1029Google Scholar
Titov, V. S., Galsgaard, K., & Neukirch, T. 2003, Astrophys. J., 582, 1172Google Scholar
Wilmot-Smith, A. L., Hornig, G., & Pontin, D. I. 2009, Astrophys. J., 696, 1339Google Scholar
Wilmot-Smith, A. L., Pontin, D. I., & Hornig, G. 2010, Astron. Astrophys., 516, A5+Google Scholar