Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T04:09:10.675Z Has data issue: false hasContentIssue false

13C/18O ratio as a litmus test of stellar IMF variations in high-redshift starbursts

Published online by Cambridge University Press:  04 June 2020

Donatella Romano
Affiliation:
INAF, Astrophysics and Space Science Observatory, Via Gobetti 93/3, I-40129 Bologna, Italy email: [email protected]
Zhi-Yu Zhang
Affiliation:
Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748, Garching bei München, Germany
Francesca Matteucci
Affiliation:
Physics Department, Section of Astronomy, University of Trieste, Via Tiepolo 11, I-34131, Trieste, Italy INAF, Astronomical Observatory of Trieste, Via Tiepolo 11, I-34131, Trieste, Italy
Rob J. Ivison
Affiliation:
Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748, Garching bei München, Germany
Padelis P. Papadopoulos
Affiliation:
Physics Department, Section of Astrophysics, Astronomy and Mechanics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Determining the shape of the stellar initial mass function (IMF) and whether it is constant or varies in space and time is the Holy Grail of modern astrophysics, with profound implications for all theories of star and galaxy formation. On a theoretical ground, the extreme conditions for star formation (SF) encountered in the most powerful starbursts in the Universe are expected to favour the formation of massive stars. Direct methods of IMF determination, however, cannot probe such systems, because of the severe dust obscuration affecting their starlight. The next best option is to observe CNO bearing molecules in the interstellar medium at millimetre/ submillimetre wavelengths, which, in principle, provides the best indirect evidence for IMF variations. In this contribution, we present our recent findings on this issue. First, we reassess the roles of different types of stars in the production of CNO isotopes. Then, we calibrate a proprietary chemical evolution code using Milky Way data from the literature, and extend it to discuss extragalactic data. We show that, though significant uncertainties still hamper our knowledge of the evolution of CNO isotopes in galaxies, compelling evidence for an IMF skewed towards high-mass stars can be found for galaxy-wide starbursts. In particular, we analyse a sample of submillimetre galaxies observed by us with the Atacama Large Millimetre Array at the peak of the SF activity of the Universe, for which we measure 13C/18O⋍1. This isotope ratio is especially sensitive to IMF variations, and is little affected by observational uncertainties. At the end, ongoing developments of our work are briefly outlined.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bastian, N., Covey, K. R., & Michael, R. M. 2010, ARAA, 48, 339CrossRefGoogle Scholar
Henkel, C. & Mauersberger, R. 1993, A&A, 274, 730Google Scholar
Ivison, R. J.et al. 1998, MNRAS, 298, 58310.1046/j.1365-8711.1998.01677.xCrossRefGoogle Scholar
Jeřábková, T., Hasani Zonoozi, A., Kroupa, P., Beccari, G., Yan, Z., Vazdekis, A., & Zhang, Z.-Y. 2018, A&A, 620, A39Google Scholar
Limongi, M. & Chieffi, A. 2018, ApJS, 237, 1310.3847/1538-4365/aacb24CrossRefGoogle Scholar
Matteucci, F. 2012, Chemical Evolution of Galaxies (Berlin: Springer-Verlag)10.1007/978-3-642-22491-1CrossRefGoogle Scholar
Meynet, G. & Maeder, A. 2002, A&A, 390, 561Google Scholar
Papadopoulos, P. P. 2010, ApJ, 720, 22610.1088/0004-637X/720/1/226CrossRefGoogle Scholar
Papadopoulos, P. P., Zhang, Z.-Y., Xilouris, E. M., Weiss, A., van der Werf, P., Israel, F. P., Greve, T. R., Isaak, K. G., & Gao, Y. 2014, ApJ, 788, 15310.1088/0004-637X/788/2/153CrossRefGoogle Scholar
Pignatari, M.et al. 2015, ApJ, 808, L4310.1088/2041-8205/808/2/L43CrossRefGoogle Scholar
Romano, D. & Matteucci, F. 2003, MNRAS, 342, 18510.1046/j.1365-8711.2003.06526.xCrossRefGoogle Scholar
Romano, D., Karakas, A. I, Tosi, M., & Matteucci, F. 2010, A&A, 522, A32Google Scholar
Romano, D., Matteucci, F., Zhang, Z.-Y., Papadopoulos, P. P., & Ivison, R. 2017, MNRAS, 470, 40110.1093/mnras/stx1197CrossRefGoogle Scholar
Salpeter, E. E. 1955, ApJ, 121, 16110.1086/145971CrossRefGoogle Scholar
Simpson, J. M., et al. 2017, ApJ, 844, L1010.3847/2041-8213/aa7cf2CrossRefGoogle Scholar
Zhang, Z.-Y., Romano, D., Ivison, R. J., Papadopoulos, P. P., & Matteucci, F. 2018, Nature, 558, 26010.1038/s41586-018-0196-xCrossRefGoogle Scholar