Published online by Cambridge University Press: 20 January 2009
It has been well known for many years (2) that if Fμ(t) is the Fourier-Stieltjes transform of a bounded measure μ on the real line R, which is bounded away from zero, it does not follow that [Fμ(t)]−1 is also the Fourier-Stieltjes transform of a measure. It seems of interest (as was remarked, in conversation, by J. D. Weston) to consider measures on the half-line R+ = [0, ∞[, instead of on R.