Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T13:30:48.480Z Has data issue: false hasContentIssue false

Whittaker's Work on the Integral Representation of Harmonic Functions*

Published online by Cambridge University Press:  20 January 2009

G. Temple
Affiliation:
The Mathematical Institute, 10 Parks Road, Oxford
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is a singular honour to be invited to deliver a lecture commemorating the work of Sir Edmund Whittaker, especially before the Edinburgh Mathematical Society, whose development owes so much to his initiative and co-operation. But when I reflect on the difficulties of the task I can only exclaim in the words of St Jerome's preface to his translation of the New Testament, “Pius labor, sed periculosa praesumptio”.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1958

References

REFERENCES

(1)Bateman, H., Trans. Camb. Phil. Soc., 21 (1912), 193.Google Scholar
(2)Bergman, S., Trans. Amer. Math. Soc., 59 (1946), 210247;CrossRefGoogle Scholar
(2)Duke Math. Journ., 13 (1946), 419459.Google Scholar
(3)Boole, G., Phil. Trans. B.S. (1844), 225282.Google Scholar
(4)Copson, E. T., Proc. Edin. Math. Soc., (ii) 1 (1927), 6264CrossRefGoogle Scholar
(5)Darboux, G., Leçons sur la théorie générale des Surfaces, 2e Partie (1889), chap. III, 5470.Google Scholar
(6)Donkin, W. F., Phil. Trans. R.S. (1857), 4358.Google Scholar
(7)Dougall, J., Proc. Edin. Math. Soc., 8 (18891990), 8689.CrossRefGoogle Scholar
(8)Erdelyi, A., Proc. Edin. Math. Soc. (ii), 7 (1942), 315.CrossRefGoogle Scholar
(9)Ince, E. L., Proc. Roy. Soc. Edin., 60 (19391940), 4763.CrossRefGoogle Scholar
(10)StJerome, , Epistula ad Damasum.Google Scholar
(11)Poisson, S. D., Journ. d I'École Royale Polytechnique, tome XII, cahier XIX, (1823), 215248.Google Scholar
(12)Sieger, S., Ann. d. Phys., 27 (1908), 646.Google Scholar
(13)Weinstein, A., Bull. Amer. Math. Soc., 59 (1953), 2038.CrossRefGoogle Scholar
(14)Weinstein, A., Proc. Int. Congress of Math. (1954), 3, 264269.Google Scholar
(15)Whittaker, E. T., M.N.R.A.S., 62 (1902), 617620.CrossRefGoogle Scholar
(16)Whittaker, E. T., Math. Ann., 57 (1903), 333355.CrossRefGoogle Scholar
(17)Whittaker, E. T., Proc. V. Int. Congress of Math. (1912), 1, 366371.Google Scholar
(18)Whittaker, E. T., Proc Roy. Soc Edin., 32 (1914), 7580.Google Scholar
(19)Whittaker, E. T., Proc. Lond. Math. Soc. (ii), 14 (1914), 260268.Google Scholar