Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-07T12:08:23.413Z Has data issue: false hasContentIssue false

Weighted Vector-Valued Inequalities for a Class of Multilinear Singular Integral Operators

Published online by Cambridge University Press:  15 February 2018

Guoen Hu*
Affiliation:
Department of Applied Mathematics, Zhengzhou Information Science and Technology Institute, Zhengzhou 450001, People's Republic of China ([email protected])
Kangwei Li
Affiliation:
Department of Mathematics and Statistics, P.O.B. 68 (Gustaf Hällströmin katu 2b), FI-00014 University of Helsinki, Finland ([email protected])
*
*Corresponding author.

Abstract

In this paper, some weighted vector-valued inequalities with multiple weights $A_{\vec P}$ (ℝmn)are established for a class of multilinear singular integral operators. The weighted estimates for the multi(sub)linear maximal operators which control the multilinear singular integral operators are also considered.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Anderson, K. F. and John, R. T., Weighted inequality for vector-valued maximal functions and singular integrals, Studia Math. 69 (1980), 1931.Google Scholar
2Coifman, R. R. and Meyer, Y., On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc. 212 (1975), 315331.CrossRefGoogle Scholar
3Coifman, R. R. and Meyer, Y., Au delà des opérateurs pseudo-différentiels, Astériaque 57 (1978), 1185.Google Scholar
4Cruz-Uribe, D. SFO, Martell, J. and Pérez, C., Sharp weighted estimates for classical operators, Adv. Math. 229 (2012), 408441.Google Scholar
5Duong, X., Gong, R., Grafakos, L., Li, J. and Yan, L., Maximal operator for multilinear singular integrals with non-smooth kernels, Indiana Univ. Math. J. 58 (2009), 25172542.Google Scholar
6Duong, X., Grafakos, L. and Yan, L., Multilinear operators with non-smooth kernels and commutators of singular integrals, Trans. Amer. Math. Soc. 362 (2010), 20892113.Google Scholar
7Fefferman, C. and Stein, E. M., Some maximal operators, Amer. J. Math. 93 (1971), 107115.CrossRefGoogle Scholar
8Garcia-Cuerva, J. and de Francia, J. L. Rubio, Weighted norm inequalities and related topics (North-Holland, Amsterdam, 1985).Google Scholar
9Grafakos, L. and Kalton, N., Multilinear Calderón–Zygmund operators on hardy spaces, Collect. Math. 52 (2001), 169179.Google Scholar
10Grafakos, L., Liu, L. and Yang, D., Multiple-weighted norm inequalities for maximal singular integrals with non-smooth kernels, Proc. Royal Soc. Edinb. 141A (2011), 755775.Google Scholar
11Grafakos, L. and Martell, J. M., Extrapolation of weighted norm inequalities for multivariable operators and applications, J. Geom. Anal. 14 (2004), 1946.Google Scholar
12Grafakos, L. and Torres, R., Multilinear Calderón–Zygmund theory, Adv. Math. 165 (2002), 124164.Google Scholar
13Grafakos, L. and Torres, R., Maximal operator and weighted norm inequalities for multilinear singular integrals, Indiana Univ. Math. J. 51 (2002), 12611276.Google Scholar
14Hu, G. and Zhu, Y., Weighted norm inequalities with general weights for the commutator of Calderón, Acta Math. Sinica, English Ser. 29 (2013), 505514.Google Scholar
15Hytönen, T. and Pérez, C., Sharp weighted bounds involving A , J. Anal. PDE. 6 (2013), 777818.Google Scholar
16Lerner, A., Ombrossi, S., Pérez, C., Torres, R. H. and Trojillo-Gonzalez, R., New maximal functions and multiple weights for the multilinear Calderón–Zygmund theory, Adv. Math. 220 (2009), 12221264.Google Scholar
17Li, K., Moen, K. and Sun, W., The sharp weighted bound for multilinear maximal functions and Calderón–Zygmund operators, J. Four. Anal. Appl. 20 (2014), 751765.Google Scholar
18Li, K. and Sun, W., Weak and strong type weighted estimates for multilinear Calderón–Zygmund operators, Adv. Math. 254 (2014), 736771.Google Scholar
19Sawyer, E., Norm inequalities relating singular integrals and the maximal function, Studia Math. 75 (1983), 253263.Google Scholar
20Stein, E. M., Singular integrals and the differential properties of functions (Princeton University Press, Princeton, NJ, 1970).Google Scholar
21Stein, E. M., Harmonic analysis, real variable methods, orthogonality, and oscillatory integrals (Princeton University Press, Princeton, NJ, 1993).Google Scholar