Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T06:57:22.466Z Has data issue: false hasContentIssue false

Weakly compact multilinear mappings

Published online by Cambridge University Press:  20 January 2009

Richard M. Aron
Affiliation:
Mathematics Department, Kent State University, Kent, Ohio 44242, U.S.A. E-mail: [email protected]
Pablo Galindo
Affiliation:
Departamento de Análisis Matemático, Universidad de Valencia, Doctor Moliner 50, 46100 Burjasot (Valencia), Spain, E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The notion of Arens regularity of a bilinear form on a Banach space E is extended to continuous m-linear forms, in such a way that the natural associated linear mappings, EL (m−1E) and (m – l)-linear mappings E × … × EE', are all weakly compact. Among other applications, polynomials whose first derivative is weakly compact are characterized.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1997

References

REFERENCES

1. Alencar, R. and Floret, K., Weak-strong continuity of multilinear mappings and the Pelczynski-Pitt theorem, J. Math. Anal. Appl., to appear.Google Scholar
2. Arens, R., The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839848.CrossRefGoogle Scholar
3. Aron, R., Alencar, R. and Dineen, S., A reflexive space of holomorphic functions in infinitely many variables, Proc. Amer. Math. Soc. 90 (1984), 407411.Google Scholar
4. Aron, R. and Berner, P., A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. France 106 (1978), 324.CrossRefGoogle Scholar
5. Aron, R., Choi, S. Y. and Llavona, J. L. G., Estimates by polynomials, Bull. Austral. Math. Soc. 52 (1995), 475486.CrossRefGoogle Scholar
6. Aron, R., Cole, B. and Gamelin, T., Spectra of algebras of analytic functions on a Banach space, J. Reine Angew. Math. 415 (1991), 5193.Google Scholar
7. Aron, R. and Dineen, S., Q-reflexive Banach Spaces, Rocky Mountain J. Math., to appear.Google Scholar
8. Aron, R., Galindo, P., García, D. and Maestre, M., Regularity and Algebras of Analytic Functions in Infinite Dimensions, Trans. Amer. Math. Soc. 348 (1996), 543559.CrossRefGoogle Scholar
9. Aron, R., Herves, C. and Valdivia, M., Weakly continuous mappings on Banach spaces, J. Funct. Anal. 52 (1983), 189204.CrossRefGoogle Scholar
10. Diestel, J., Sequences and series in Banach spaces (Graduate Texts in Math. 92, Springer-Verlag, New York, 1984).CrossRefGoogle Scholar
11. Dineen, S., Complex Analysis in Locally Convex Spaces (Math. Studies 57, North-Holland, Amsterdam, 1981).CrossRefGoogle Scholar
12. Farmer, J., Polynomial Reflexivity in Banach Spaces. Israel J. Math. 87 (1994), 257273.CrossRefGoogle Scholar
13. Jarchow, H., Locally Convex Spaces (Teubner, 1981).CrossRefGoogle Scholar
14. Pelczynski, A., On weakly compact polynomial operators with Dunford-Pettis property, Bull. Acad. Polonaise Sc., 11 (1963), 371378.Google Scholar
15. Ryan, R., Weakly compact holomorphic mappings on Banach Spaces. Pacific J. Math. 131 (1988), 179190.CrossRefGoogle Scholar
16. Saab, E. and Saab, P., Extensions of some classes of operators and applications, Rocky Mountain J. Math. 23 (1993), 319337.CrossRefGoogle Scholar
17. Toma, E., Aplicaç;ōes holomorfas e polinómios τ-continuos (Thesis, Univ. Federal do Rio de Janeiro, 1993).Google Scholar
18. Ülger, A., Weakly compact bilinear forms and Arens regularity, Proc. Amer. Math. Soc. 101 (1987), 697704.CrossRefGoogle Scholar