Article contents
TWO-PARAMETER UNIFORMLY ELLIPTIC STURM–LIOUVILLE PROBLEMS WITH EIGENPARAMETER-DEPENDENT BOUNDARY CONDITIONS
Published online by Cambridge University Press: 15 September 2005
Abstract
We consider the two-parameter Sturm–Liouville system
$$ -y_1''+q_1y_1=(\lambda r_{11}+\mu r_{12})y_1\quad\text{on }[0,1], $$
with the boundary conditions
$$ \frac{y_1'(0)}{y_1(0)}=\cot\alpha_1\quad\text{and}\quad\frac{y_1'(1)}{y_1(1)}=\frac{a_1\lambda+b_1}{c_1\lambda+d_1}, $$
and
$$ -y_2''+q_2y_2=(\lambda r_{21}+\mu r_{22})y_2\quad\text{on }[0,1], $$
with the boundary conditions
$$ \frac{y_2'(0)}{y_2(0)} =\cot\alpha_2\quad\text{and}\quad\frac{y_2'(1)}{y_2(1)}=\frac{a_2\mu+b_2}{c_2\mu+d_2}, $$
subject to the uniform-left-definite and uniform-ellipticity conditions; where $q_{i}$ and $r_{ij}$ are continuous real valued functions on $[0,1]$, the angle $\alpha_{i}$ is in $[0,\pi)$ and $a_{i}$, $b_{i}$, $c_{i}$, $d_{i}$ are real numbers with $\delta_{i}=a_{i}d_{i}-b_{i}c_{i}>0$ and $c_{i}\neq0$ for $i,j=1,2$. Results are given on asymptotics, oscillation of eigenfunctions and location of eigenvalues.
Keywords
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 48 , Issue 3 , October 2005 , pp. 531 - 547
- Copyright
- Copyright © Edinburgh Mathematical Society 2005
- 1
- Cited by