Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-24T00:28:40.188Z Has data issue: false hasContentIssue false

Topological rigidity for closed hypersurfaces of elliptic space forms

Published online by Cambridge University Press:  20 June 2019

Eduardo Rosinato Longa
Affiliation:
Instituto de Matemática e Estatística, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil ([email protected]; [email protected])
Jaime Bruck Ripoll
Affiliation:
Instituto de Matemática e Estatística, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil ([email protected]; [email protected])

Abstract

We prove a topological rigidity theorem for closed hypersurfaces of the Euclidean sphere and of an elliptic space form. It asserts that, under a lower bound hypothesis on the absolute value of the principal curvatures, the hypersurface is diffeomorphic to a sphere or to a quotient of a sphere by a group action. We also prove another topological rigidity result for hypersurfaces of the sphere that involves the spherical image of its usual Gauss map.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Adams, J. F., Vector fields on spheres, Annals of Math. 75(3) (1962), 603632.Google Scholar
2.Alencar, H., Rosenberg, H. and Santos, W., On the Gauss map of hypersurfaces with constant scalar curvature in spheres, Proc. Amer. Math. Soc. 132(12) (2004), 37313739.Google Scholar
3.Cartan, E., Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. Mat. Pura Appl. 17(1) (1938), 177191.Google Scholar
4.De Giorgi, E., Una estensione del teorema di Bernstein, Ann. Scuola Norm. Sup. Pisa (3) 19 (1965), 7985.Google Scholar
5.do Carmo, M. P., Riemannian geometry (Birkhäuser, Boston, 1993).Google Scholar
6.do Carmo, M. P. and Warner, F. W., Rigidity and convexity of hypersurfaces in spheres, J. Diff. Geom. 4 (1970), 133144.Google Scholar
7.Eschenburg, J.-H., Local convexity and nonnegative curvature – Gromov's proof of the sphere theorem, Invent. Math. 84 (1986), 507522.Google Scholar
8.Nomizu, K. and Smyth, B., On the Gauss mapping for hypersurfaces of constant mean curvature in the sphere, Comment. Math. Helv. 44 (1969), 484490.Google Scholar
9.Ozols, V., Cut loci in Riemannian manifolds, Tôhoku Math. J. 26 (1974), 219227.Google Scholar
10.Simons, J., Minimal varieties in Riemannian manifolds, Ann. of Math. (2) 88 (1968), 62105.Google Scholar
11.Steenrod, N., The topology of fibre bundles (Princeton University Press, Princeton, NJ, 1951).Google Scholar
12.Wang, Q. and Xia, C., Rigidity of hypersurfaces in a Euclidean sphere, Proc. Edinburgh Math. Soc. 49 (2006), 241249.Google Scholar