Article contents
Toeplitz operators on Bergman spaces of polygonal domains
Published online by Cambridge University Press: 26 June 2019
Abstract
We study the boundedness of Toeplitz operators with locally integrable symbols on Bergman spaces Ap(Ω), 1 < p < ∞, where Ω ⊂ ℂ is a bounded simply connected domain with polygonal boundary. We give sufficient conditions for the boundedness of generalized Toeplitz operators in terms of ‘averages’ of symbol over certain Cartesian squares. We use the Whitney decomposition of Ω in the proof. We also give examples of bounded Toeplitz operators on Ap(Ω) in the case where polygon Ω has such a large corner that the Bergman projection is unbounded.
Keywords
MSC classification
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 62 , Issue 4 , November 2019 , pp. 1115 - 1136
- Copyright
- Copyright © Edinburgh Mathematical Society 2019
References
- 3
- Cited by