Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T10:57:20.532Z Has data issue: false hasContentIssue false

τ-Tilting finite cluster-tilted algebras

Published online by Cambridge University Press:  21 July 2020

Stephen Zito*
Affiliation:
Department of Mathematics, University of Connecticut-WaterburyWaterbury, CT06702, USA ([email protected])

Abstract

We prove if B is a cluster-tilted algebra, then B is τB-tilting finite if and only if B is representation-finite.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Adachi, T., Iyama, O. and Reiten, I., τ-tilting theory, Compos. Math. 150(3) (2014), 415452.CrossRefGoogle Scholar
2.Assem, I., Brüstle, T. and Schiffler, R., Cluster-tilted algebras and slices, J. Algebra 319 (2008), 34643479.CrossRefGoogle Scholar
3.Assem, I., Brüstle, T. and Schiffler, R., Cluster-tilted algebras as trivial extensions, Bull. Lond. Math. Soc. 40 (2008), 151162.CrossRefGoogle Scholar
4.Assem, I., Brüstle, T. and Schiffler, R., Cluster-tilted algebras without clusters, J. Algebra 324 (2010), 24752502.CrossRefGoogle Scholar
5.Assem, I., Schiffler, R. and Serhiyenko, K., Modules over cluster-tilted algebras that do not lie on local slices, Archiv der Math. 110(1) (2018), 918.CrossRefGoogle Scholar
6.Assem, I., Simson, D. and Skowronski, A., Elements of the representation theory of associative algebras, 1: techniques of representation theory, London Mathematical Society Student Texts, Volume 65 (Cambridge University Press, 2006).CrossRefGoogle Scholar
7.Buan, A. B., Marsh, R., Reineke, M., Reiten, I. and Todorov, G., Tilting theory and cluster combinatorics, Adv. Math. 204(2) (2006), 572618.CrossRefGoogle Scholar
8.Buan, A. B., Marsh, R. and Reiten, I., Cluster-tilted algebras, Trans. Am. Math. Soc. 359(1) (2007), 323332.CrossRefGoogle Scholar
9.Caldero, P., Chapoton, F. and Schiffler, R., Quivers with relations arising from clusters (A n case), Trans. Am. Math. Soc. 358(4) (2006), 359376.Google Scholar
10.Demonet, L., Iyama, O. and Jasso, G., τ-tilting finite algebras, bricks, and g-vectors, Int. Math. Res. Notices 2019(3) (2019), 852892.CrossRefGoogle Scholar
11.Happel, D. and Ringel, C. M., Tilted algebras, Trans. Am. Math. Soc. 274(2) (1982), 399443.CrossRefGoogle Scholar
12.Ringel, C. M., Tame algebras and integral quadratic forms, Lecture Notes in Math., Volume 1099 (Springer-Verlag, 1984).CrossRefGoogle Scholar
13.Strauss, H., The perpendicular category of a partial tilting module, J. Algebra 144(1) (1991), 4366.CrossRefGoogle Scholar