Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T00:24:52.656Z Has data issue: false hasContentIssue false

Symplectic T7, T8 singularities and Lagrangian tangency orders

Published online by Cambridge University Press:  28 August 2012

Wojciech Domitrz
Affiliation:
Faculty of Mathematics and Information Science, Warsaw University of Technology, Plac Politechniki 1, 00661 Warsaw, Poland ([email protected]; [email protected])
Żaneta Trȩbska
Affiliation:
Faculty of Mathematics and Information Science, Warsaw University of Technology, Plac Politechniki 1, 00661 Warsaw, Poland ([email protected]; [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the local symplectic algebra of curves. We use the method of algebraic restrictions to classify symplectic T7, T8 singularities. We define discrete symplectic invariants (the Lagrangian tangency orders) and compare them with the index of isotropy. We use these invariants to distinguish symplectic singularities of classical T7 singularity. We also give the geometric description of symplectic classes of the singularity.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2012

References

1.Arnold, V. I., Simple singularities of curves, Proc. Steklov Inst. Math. 226 (1999), 2028.Google Scholar
2.Arnold, V. I., First step of local symplectic algebra, in Differential topology, infinite-dimensional Lie algebras, and applications: D. B. Fuchs' 60th anniversary collection, American Mathematical Society Translations, Series 2, Volume 194, pp. 18 (American Mathematical Society, Providence, RI, 1999).Google Scholar
3.Arnold, V. I. and Givental, A. B., Symplectic geometry, in Dynamical systems IV, Encyclopedia of Matematical Sciences, Volume 4, pp. 1138 (Springer, 2001).CrossRefGoogle Scholar
4.Arnold, V. I., Goryunov, V. V., Lyashko, O. V. and Vasil'ev, V. A., Singualrity theory, II, Classification and applications, in Dynamical systems VIII, Encyclopedia of Matematical Sciences, Volume 39, pp. 3334 (Springer, 1993).CrossRefGoogle Scholar
5.Arnold, V. I., Gusein-Zade, S. M. and Varchenko, A. N., Singularities of differentiable maps, Volume 1 (Birkhäuser, Boston, MA, 1985).CrossRefGoogle Scholar
6.Domitrz, W., Local symplectic algebra of quasi-homogeneous curves, Fund. Math. 204 (2009), 5786.CrossRefGoogle Scholar
7.Domitrz, W., Janeczko, S. and Zhitomirskii, M., Relative Poincare lemma, contractibility, quasi-homogeneity and vector fields tangent to a singular variety, Illinois J. Math. 48 (2004), 803835.CrossRefGoogle Scholar
8.Domitrz, W., Janeczko, S. and Zhitomirskii, M., Symplectic singularities of varietes: the method of algebraic restrictions, J. Reine Angew. Math. 618 (2008), 197235.Google Scholar
9.Domitrz, W. and Rieger, J. H., Volume preserving subgroups of and and singularities in unimodular geometry, Math. Annalen 345 (2009), 783817.CrossRefGoogle Scholar
10.Domitrz, W. and Trebska, Z., Symplectic Sμ singularities, in Proce. of 11th Intl Workshop on Real and Complex Singularities, Contemporary Mathematics (American Mathematical Society, Providence, RI), in press.Google Scholar
11.Giusti, M., Classification des singularités isolées d'intersections complètes simples, C. R. Acad. Sci. Paris Sér. A 284 (1977), 167170.Google Scholar
12.Ishikawa, G. and Janeczko, S., Symplectic bifurcations of plane curves and isotropic liftings, Q. J. Math. 54 (2003), 73102.CrossRefGoogle Scholar
13.Ishikawa, G. and Janeczko, S., Symplectic singularities of isotropic mappings, Banach Center Publ. 65 (2004), 85106.CrossRefGoogle Scholar
14.Kolgushkin, P. A., Classification of simple multigerms of curves in a space endowed with a symplectic structure, St Petersburg Math. J. 15 (2004), 103126.CrossRefGoogle Scholar
15.Wahl, J. M., Derivations, automorphisms and deformations of quasi-homogeneous singularities, in Singularities, Part 2, Proceedings of Symposia in Pure Mathematics, Volume 40, pp. 613624 (American Mathematical Society, Providence, RI, 1983).CrossRefGoogle Scholar
16.Wall, C. T. C., Singular points of plane curves, London Mathematical Society Student Texts, Volume 63 (Cambridge University Press, 2004).CrossRefGoogle Scholar
17.Zhitomirskii, M., Relative Darboux theorem for singular manifolds and local contact algebra, Can. J. Math. 57 (2005), 13141340.CrossRefGoogle Scholar