Published online by Cambridge University Press: 20 January 2009
Strongly prime rings were introduced by Handelman and Lawrence [5] and in [2] Groenewald and Heyman investigated the upper radical determined by the class of all strongly prime rings. In this paper we extend the concept of strongly prime to near-rings. We show that the class M of distributively generated near-rings is a special class in the sense of Kaarli [6]. We also show that if N is any distributively generated near-ring, then UM(N), UM denotes the upper radical determined by the class M, coincides with the intersection of all the strongly prime ideals of N.