Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T20:59:21.337Z Has data issue: false hasContentIssue false

Spaces with Noetherian cohomology

Published online by Cambridge University Press:  05 December 2012

Kasper K. S. Andersen
Affiliation:
Centre for Mathematical Sciences, Lunds Tekniska Högskola, Box 118, 22100 Lund, Sweden ([email protected])
Natàlia Castellana
Affiliation:
Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain ([email protected])
Vincent Franjou
Affiliation:
Laboratoire Jean-Leray, UMR 6629, 2 rue de la Houssinière, BP 92208, 44322 Nantes cedex 3, France ([email protected])
Alain Jeanneret
Affiliation:
Mathematisches Institut, Universität Bern, Sidlerstrasse 5, 3012 Bern, Switzerland ([email protected])
Jérôme Scherer
Affiliation:
École Polytechnique Fédérale de Lausanne, School of Basic Sciences, Mathematics Institute of Geometry and Applications, MA B3 455, Station 8, 1015 Lausanne, Switzerland ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Is the cohomology of the classifying space of a p-compact group, with Noetherian twisted coefficients, a Noetherian module? In this paper we provide, over the ring of p-adic integers, such a generalization to p-compact groups of the Evens–Venkov Theorem. We consider the cohomology of a space with coefficients in a module, and we compare Noetherianity over the field with p elements with Noetherianity over the p-adic integers, in the case when the fundamental group is a finite p-group.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2012

References

1.Adams, J. F., Stable homotopy and generalised homology, Chicago Lectures in Mathematics (University of Chicago Press, 1974).Google Scholar
2.Aguadé, J., Broto, C. and Notbohm, D., Homotopy classification of spaces with interesting cohomology and a conjecture of Cooke, I, Topology 33 (1994), 455492.CrossRefGoogle Scholar
3.Andersen, K. K. S. and Grodal, J., The classification of 2-compact groups, J. Am. Math. Soc. 22(2) (2009), 387436.CrossRefGoogle Scholar
4.Andersen, K. K. S., Grodal, J., Møller, J. M. and Viruel, A., The classification of p-compact groups for p odd, Annals Math. 167(1) (2008), 95210.CrossRefGoogle Scholar
5.Atiyah, M. F. and Macdonald, I. G., Introduction to commutative algebra (Addison-Wesley, Reading, MA, 1969).Google Scholar
6.Benson, D. J. and Habegger, N., Varieties for modules and a problem of Steenrod, J. Pure Appl. Alg. 44 (1987), 1334.CrossRefGoogle Scholar
7.Bousfield, A. K., On the p-adic completions of nonnilpotent spaces, Trans. Am. Math. Soc. 331(1) (1992), 335359.Google Scholar
8.Bousfield, A. K. and Kan, D. M., Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Volume 304 (Springer, 1972).CrossRefGoogle Scholar
9.Broto, C., Levi, R. and Oliver, B., The homotopy theory of fusion systems, J. Am. Math. Soc. 16(4) (2003), 779856.CrossRefGoogle Scholar
10.Brown, E. H. Jr, The cohomology of BSOn and BOn with integer coefficients, Proc. Am. Math. Soc. 85(2) (1982), 283288.Google Scholar
11.Čadek, M., The cohomology of BO(n) with twisted integer coefficients, J. Math. Kyoto Univ. 39(2) (1999), 277286.Google Scholar
12.Dwyer, W. G., Transfer maps for fibrations, Math. Proc. Camb. Phil. Soc. 120(2) (1996), 221235.CrossRefGoogle Scholar
13.Dwyer, W. G. and Wilkerson, C. W., Homotopy fixed-point methods for Lie groups and finite loop spaces, Annals Math. 139(2) (1994), 395442.CrossRefGoogle Scholar
14.Evens, L., The cohomology ring of a finite group, Trans. Am. Math. Soc. 101 (1961), 224239.CrossRefGoogle Scholar
15.Evens, L., The spectral sequence of a finite group extension stops, Trans. Am. Math. Soc. 212 (1975), 269277.CrossRefGoogle Scholar
16.Golod, E., The cohomology ring of a finite p-group, Dokl. Akad. Nauk SSSR 125 (1959), 703706.Google Scholar
17.Greenblatt, R., Homology with local coefficients and characteristic classes, Homol. Homot. Applic. 8(2) (2006), 91103.CrossRefGoogle Scholar
18.Levi, R. and Ragnarsson, K., p-local finite group cohomology, Homol. Homot. Applic. 13(1) (2011), 223257.CrossRefGoogle Scholar
19.Matsumura, H., Commutative ring theory, 2nd edn, Cambridge Studies in Advanced Mathematics, Volume 8 (Cambridge University Press, 1989).Google Scholar
20.Minh, P. A. and Symonds, P., Cohomology and finite subgroups of profinite subgroups, Proc. Am. Math. Soc. 132(6) (2004), 15811588.CrossRefGoogle Scholar
21.Moerdijk, I. and Svensson, J.-A., The equivariant Serre spectral sequence, Proc. Am. Math. Soc. 118(1) (1993), 263278.CrossRefGoogle Scholar
22.Møller, J. M., N-determined 2-compact groups, II, Fund. Math. 196(1) (2007), 190.CrossRefGoogle Scholar
23.Ragnarsson, K., Classifying spectra of saturated fusion systems, Alg. Geom. Topol. 6 (2006), 195252.CrossRefGoogle Scholar
24.Spanier, E. H., Algebraic topology (Springer, 1981; corrected reprint).CrossRefGoogle Scholar
25.Venkov, B. B., Cohomology algebras for some classifying spaces, Dokl. Akad. Nauk SSSR 127 (1959), 943944.Google Scholar