Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T05:09:19.092Z Has data issue: false hasContentIssue false

Some congruences for 12-coloured generalized Frobenius partitions

Published online by Cambridge University Press:  02 May 2024

Su-Ping Cui
Affiliation:
School of Mathematical Sciences, Qufu Normal University, Qufu, PR China
Nancy S. S. Gu
Affiliation:
Center for Combinatorics, LPMC, Nankai University, Tianjin, PR China
Dazhao Tang*
Affiliation:
School of Mathematical Sciences, Chongqing Normal University, Chongqing, PR China
*
Corresponding author: Dazhao Tang, email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

In his 1984 AMS Memoir, Andrews introduced the family of functions $c\phi_k(n)$, the number of k-coloured generalized Frobenius partitions of n. In 2019, Chan, Wang and Yang systematically studied the arithmetic properties of $\textrm{C}\Phi_k(q)$ for $2\leq k\leq17$ by utilizing the theory of modular forms, where $\textrm{C}\Phi_k(q)$ denotes the generating function of $c\phi_k(n)$. In this paper, we first establish another expression of $\textrm{C}\Phi_{12}(q)$ with integer coefficients, then prove some congruences modulo small powers of 3 for $c\phi_{12}(n)$ by using some parameterized identities of theta functions due to A. Alaca, S. Alaca and Williams. Finally, we conjecture three families of congruences modulo powers of 3 satisfied by $c\phi_{12}(n)$.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

1. Introduction

Throughout this paper, we always assume that q is a complex number such that $|q| \lt 1$ and adopt the following standard notation:

\begin{align*} (a;q)_\infty:=\prod_{k=0}^\infty(1-aq^k). \end{align*}

In his 1984 AMS Memoir, Andrews [Reference Andrews2] defined the notion of a generalized Frobenius partition of n, which is a two-rowed array of nonnegative integers of the form:

\begin{align*} \begin{pmatrix}a_{1} &a_{2} &\cdots &a_{r}\\ b_{1} &b_{2} &\cdots &b_{r} \end{pmatrix}, \end{align*}

wherein each row, which is of the same length, is arranged in weakly decreasing order with $n=r+\sum_{i=1}^r(a_i+b_i)$. Furthermore, Andrews studied a variant of generalized Frobenius partitions whose parts are taken from k copies of the nonnegative integers, which is called k-coloured generalized Frobenius partitions. For any $k\geq1$, let $c\phi_k(n)$ denote the number of k-coloured generalized Frobenius partitions of n. Among many other things, Andrews [Reference Andrews2, Corollary 10.1] proved that for any $n\geq0$,

\begin{align*} c\phi_2(5n+3)\equiv0\pmod{5}. \end{align*}

From then on, many scholars extensively investigated a number of congruence properties for $c\phi_k(n)$ with different moduli. Baruah and Sarmah [Reference Baruah and Sarmah3, Reference Baruah and Sarmah4] derived some congruences modulo small powers of 2 for $c\phi_4(n)$ and some congruences modulo small powers of 3 for $c\phi_6(n)$. Congruence properties modulo powers of 5 for $c\phi_3(n)$ and $c\phi_4(n)$ were subsequently considered by Ono [Reference Ono28], Lovejoy [Reference Lovejoy26], Xiong [Reference Xiong39], Sellers [Reference Sellers31], Xia [Reference Xia38], Hirschhorn and Sellers [Reference Hirschhorn and Sellers21], Chan, Wang and Yang [Reference Chan, Wang and Yang7], and Wang and Zhang [Reference Wang and Zhang34]. Congruence properties modulo 7 for $c\phi_4(n)$ were investigated by Lin [Reference Lin25] and Zhang and Wang [Reference Zhang and Wang41]. Congruence properties of $c\phi_6(n)$ modulo powers of 3 were successively investigated by Xia [Reference Xia37], Hirschhorn [Reference Hirschhorn16], Gu, Wang and Xia [Reference Gu, Wang and Xia14] and the third author [Reference Tang32]. The third author [Reference Tang33] also established congruence properties modulo 5 for $c\phi_8(n)$ and $c\phi_9(n)$. There are other studies on congruence properties for $c\phi_k(n)$; see, for example, [Reference Cui and Gu9Reference Garvan and Sellers13, Reference Jameson and Wieczorek22Reference Kolitsch24, Reference Mestrige27, Reference Paule and Radu29, Reference Qu30, Reference Wang36].

In 2019, Chan, Wang and Yang [Reference Chan, Wang and Yang8] systematically investigated the arithmetic properties of $\textrm{C}\Phi_k(q)$ for $2\leq k\leq17$, where $\textrm{C}\Phi_k(q)$ denotes the generating function of $c\phi_k(n)$. In particular, they [Reference Chan, Wang and Yang8, Equation (6.26)] proved that (some typos have been corrected)

(1.1)\begin{align} \textrm{C}\Phi_{12}(q) &=\dfrac{1}{\Theta_3(q)(q;q)_\infty^{12}} \bigg({-}\dfrac{36207}{160}B_{12,1} +\dfrac{923091}{4000}B_{12,4}+\dfrac{35829}{100}B_{12,5} +\dfrac{891}{4}B_{12,6}\nonumber\\ &\quad-\dfrac{1485}{8}B_{12,7}-\dfrac{143247}{250}B_{12,8} -\dfrac{891}{4}B_{12,9}-\dfrac{8109}{160}B_{12,10} -\dfrac{582717}{16000}B_{12,11}\nonumber\\ &\quad+\dfrac{227691}{200}B_{12,12}+\dfrac{714249}{8000}B_{12,13} +\dfrac{8109}{80}B_{12,14}+\dfrac{33}{8}B_{12,15}\nonumber\\ &\quad+\dfrac{294109}{500}B_{12,16}-\dfrac{16503}{400}B_{12,17} -\dfrac{99}{8}B_{12,18}+\dfrac{10559}{200}B_{12,19}\nonumber\\ &\quad-\dfrac{128807}{100}B_{12,20}+\dfrac{25647}{160}B_{12,21} +\dfrac{727}{160}B_{12,22}\bigg), \end{align}

where the $B_{12,i}$ for $i\in\{1,4,5,\ldots,22\}$ are some functions involving the following two theta functions, given by

\begin{align*} \Theta_2(q) &=\sum_{j=-\infty}^\infty q^{(j+1/2)^2} =2q^{1/4}\dfrac{(q^4;q^4)_\infty^2}{(q^2;q^2)_\infty},\\ \Theta_3(q) &=\sum_{j=-\infty}^\infty q^{n^2} =\dfrac{(q^2;q^2)_\infty^5}{(q;q)_\infty^2(q^4;q^4)_\infty^2}. \end{align*}

It is easy to see that the coefficients of many terms in (1.1) are not integers. Therefore, a natural question is whether there is another expression with integral coefficients for $\textrm{C}\Phi_{12}(q)$. The first purpose of this paper is to establish the following expression for $\textrm{C}\Phi_{12}(q)$. For the sake of convenience, denote

(1.2)\begin{align} a(q):=\sum_{m,n=-\infty}^\infty q^{m^2+mn+n^2} \qquad\textrm{and}\qquad E(q^k):=(q^k;q^k)_\infty. \end{align}
Theorem 1.1.

(1.3)\begin{align} \textrm{C}\Phi_{12}(q) &=\dfrac{1}{E(q)^{12}} \bigg\{a(q)^4\bigg(\dfrac{E(q^6)^8E(q^{12})}{E(q^3)^4E(q^{24})^2} +8q^3\dfrac{E(q^{12})^3E(q^{24})^2}{E(q^6)^2}\bigg)\nonumber\\ &\quad+108qa(q)^2\dfrac{E(q^3)^6}{E(q)^2} \bigg(\dfrac{E(q^4)E(q^6)^4E(q^8)}{E(q^2)^2E(q^{24})} +q\dfrac{E(q^2)^3E(q^3)^2E(q^{12})E(q^{24})}{E(q)^2E(q^6)E(q^8)}\bigg)\nonumber\\ &\quad+216q^2a(q)\dfrac{E(q^3)^9}{E(q)^3} \bigg(\dfrac{E(q^2)E(q^4)E(q^6)^5E(q^{24})}{E(q)E(q^3)E(q^8)E(q^{12})^2} +2\dfrac{E(q^6)E(q^8)E(q^{12})^3}{E(q^2)E(q^{24})}\bigg)\nonumber\\ &\quad+486q^2\dfrac{E(q^3)^{12}}{E(q)^4}\bigg(\dfrac{E(q^4)^2E(q^6)^{11} E(q^{24})}{E(q^2)E(q^3)^4E(q^8)E(q^{12})^5}+4q\dfrac{E(q^8)E(q^{12})^6} {E(q^4)E(q^6)^2E(q^{24})}\bigg)\bigg\}. \end{align}

By utilizing a general congruence relation [Reference Chan, Wang and Yang8, Theorem 5.3], Chan et al. [Reference Chan, Wang and Yang8, Equations (6.28) and (6.29)] derived that for any $n\geq0$,

(1.4)\begin{align} c\phi_{12}(3n+1) &\equiv0\pmod{9},\nonumber\\ c\phi_{12}(3n+2) &\equiv0\pmod{9}. \end{align}

The other purpose of this paper is to prove the following congruences modulo 27 and 81 enjoyed by $c\phi_{12}(n)$.

Theorem 1.2. For any $n\geq0$,

(1.5)\begin{align} c\phi_{12}(3n+2) &\equiv0\pmod{27}, \end{align}
(1.6)\begin{align} c\phi_{12}(9n+5) &\equiv0\pmod{81}, \end{align}
(1.7)\begin{align} c\phi_{12}(9n+8) &\equiv0\pmod{81}. \end{align}

Remark 1.3. Obviously, (1.5) is a stronger form of (1.4). By computation, one sees that $c\phi_{12}(2)=4644\not\equiv0\pmod{81}$. From this perspective, the modulus in (1.5) is best possible. So does (1.6) and (1.7).

Actually, (1.5)–(1.7) appear to be just the tip of the iceberg. With the help of a computer, we pose the following three families of conjectural congruences modulo powers of 3 satisfied by $c\phi_{12}(n)$.

Conjecture 1.4. For any $n\geq0$ and $\alpha\geq0$,

\begin{align*} c\phi_{12}{\left(3^{2\alpha+1}n+\dfrac{3^{2\alpha+1}+1}{2}\right)} &\equiv0\pmod{3^{3\alpha+3}},\\ c\phi_{12}{\left(3^{2\alpha+2}n+\dfrac{3^{2\alpha+2}+1}{2}\right)} &\equiv0\pmod{3^{3\alpha+4}},\\ c\phi_{12}{\left(3^{2\alpha+2}n+\dfrac{5\times3^{2\alpha+1}+1}{2}\right)} &\equiv0\pmod{3^{3\alpha+4}}. \end{align*}

The rest of this paper is organized as follows. In § 2, we collect some necessary lemmas which will be utilized to prove the main results later. The proofs of Theorems 1.1 and 1.2 are presented in § 3.

2. Some preliminary results

To prove (1.5)–(1.7), we first collect some necessary identities.

Lemma 2.1.

(2.1)\begin{align} E(q)^4 &=\dfrac{E(q^4)^{10}}{E(q^2)^2E(q^8)^4} -4q\dfrac{E(q^2)^2E(q^8)^4}{E(q^4)^2}, \end{align}
(2.2)\begin{align} \dfrac{1}{E(q)^4} &=\dfrac{E(q^4)^{14}}{E(q^2)^{14}E(q^8)^4} +4q\dfrac{E(q^4)^2E(q^8)^4}{E(q^2)^{10}}. \end{align}

Proof. The identities (2.1) and (2.2) are (2.9) and (2.10) in [Reference Yao and Xia40], respectively.

Lemma 2.2.

(2.3)\begin{align} \dfrac{E(q^2)^5}{E(q)^2E(q^4)^2} &=\dfrac{E(q^{18})^5}{E(q^9)^2E(q^{36})^2} +2q\dfrac{E(q^6)^2E(q^9)E(q^{36})}{E(q^3)E(q^{12})E(q^{18})}, \end{align}
(2.4)\begin{align} \dfrac{E(q^2)^2}{E(q)} &=\dfrac{E(q^6)E(q^9)^2}{E(q^3)E(q^{18})} +q\dfrac{E(q^{18})^2}{E(q^9)}. \end{align}

Proof. The identities (2.3) and (2.4) follow from Corollary (i) and (ii) on page 49 of Berndt’s book [Reference Berndt5], respectively.

Lemma 2.3.

(2.5)\begin{align} \dfrac{E(q^2)}{E(q)^2} &=\dfrac{E(q^6)^4E(q^9)^6}{E(q^3)^8E(q^{18})^3} +2q\dfrac{E(q^6)^3E(q^9)^3}{E(q^3)^7} +4q^2\dfrac{E(q^6)^2E(q^{18})^3}{E(q^3)^6}, \end{align}
(2.6)\begin{align} \dfrac{E(q)}{E(q^2)^2} &=\dfrac{E(q^3)^2E(q^9)^3}{E(q^6)^6} -q\dfrac{E(q^3)^3E(q^{18})^3}{E(q^6)^7} +q^2\dfrac{E(q^3)^4E(q^{18})^6}{E(q^6)^8E(q^9)^3}, \end{align}
(2.7)\begin{align} \dfrac{E(q^2)}{E(q)E(q^4)} &=\dfrac{E(q^{18})^9}{E(q^3)^2E(q^9)^3E(q^{12})^2E(q^{36})^3} +q\dfrac{E(q^6)^2E(q^{18})^3}{E(q^3)^3E(q^{12})^3}\nonumber\\ &\quad+q^2\dfrac{E(q^6)^4E(q^9)^3E(q^{36})^3} {E(q^3)^4E(q^{12})^4E(q^{18})^3}. \end{align}

Proof. The identity (2.5) was derived by Hirschhorn and Sellers [Reference Hirschhorn and Sellers19, Theorem 1.1]. The identity (2.6) is equivalent to Lemma 2.2 due to Hirschhorn and Sellers [Reference Hirschhorn and Sellers20]. Moreover, replacing q by −q in (2.6) and utilizing the fact

\begin{align*} E(-q)=\dfrac{E(q^2)^3}{E(q)E(q^4)}, \end{align*}

upon simplification, we obtain (2.7).

Lemma 2.4. If a(q) is defined by (1.2), then

(2.8)\begin{align} a(q)=a(q^3)+6q\dfrac{E(q^9)^3}{E(q^3)} \end{align}

and

(2.9)\begin{align} \dfrac{1}{E(q)^3}=\dfrac{E(q^9)^3}{E(q^3)^{12}} \big(a(q^3)^2E(q^3)^2+3qa(q^3)E(q^3)E(q^9)^3+9q^2E(q^9)^6\big). \end{align}

Proof. The identity (2.8) was established by Hirschhorn, Garvan and Borwein [Reference Hirschhorn, Garvan and Borwein18, Equation (1.3)]. The identity (2.9) was proved by Wang [Reference Wang35, Equation (2.28)].

Hirschhorn et al. [Reference Hirschhorn, Garvan and Borwein18, Equation (1.5)] also proved that

\begin{align*} a(q)=1+6\sum_{n=1}^\infty{\left(\dfrac{q^{3n-2}}{1-q^{3n-2}} -\sum_{n=1}^\infty\dfrac{q^{3n-1}}{1-q^{3n-1}}\right)}, \end{align*}

from which we find that

(2.10)\begin{align} a(q)\equiv1\pmod{3}\qquad\textrm{and}\qquad a(q)^3\equiv1\pmod{9}. \end{align}

According to the binomial theorem, one can easily establish the following congruence, which will be used frequently in the sequel.

Lemma 2.5. For any $k\geq1$,

(2.11)\begin{align} E(q^k)^3 &\equiv E(q^{3k})\pmod{3}. \end{align}

3. Proofs of the main results

To prove Theorem 1.1, we require the following two related lemmas.

Lemma 3.1.

(3.1)\begin{align} \sum^{\infty}_{r_1,r_2,r_3=-\infty} &\, q^{3\sum_{i=1}^3 r^2_i+3\sum_{1\leq i \lt j\leq3}r_ir_j} =\dfrac{E(q^6)^8E(q^{12})}{E(q^3)^4E(q^{24})^2} +8q^3\dfrac{E(q^{12})^3E(q^{24})^2}{E(q^6)^2}, \end{align}
(3.2)\begin{align} \sum^{\infty}_{r_1,r_2,r_3=-\infty} &\,q^{3\sum_{i=1}^3 r^2_i +3\sum_{1\leq i \lt j\leq3}r_ir_j+r_1+r_2+2r_3}\nonumber\\ &=\dfrac{E(q^4)E(q^6)^4E(q^8)}{E(q^2)^2E(q^{24})} +q\dfrac{E(q^2)^3E(q^3)^2E(q^{12})E(q^{24})} {E(q)^2E(q^6)E(q^8)}, \end{align}
(3.3)\begin{align} \sum^{\infty}_{r_1,r_2,r_3=-\infty} &\, q^{3\sum_{i=1}^3 r^2_i+3\sum_{1\leq i \lt j\leq3}r_ir_j+3r_1+3r_2+2r_3}\nonumber\\ &=\dfrac{E(q^2)E(q^4)E(q^6)^5E(q^{24})}{E(q)E(q^3)E(q^8)E(q^{12})^2} +2\dfrac{E(q^6)E(q^8)E(q^{12})^3}{E(q^2)E(q^{24})}, \end{align}
(3.4)\begin{align} \sum^{\infty}_{r_1,r_2,r_3=-\infty} &\, q^{3\sum_{i=1}^3r_i^2+3r_1r_2-3r_1r_3-3r_2r_3+2r_1+2r_2}\nonumber\\ &=\dfrac{E(q^4)^2E(q^6)^{11}E(q^{24})} {E(q^2)E(q^3)^4E(q^8)E(q^{12})^5} +4q\dfrac{E(q^8)E(q^{12})^6}{E(q^4)E(q^6)^2E(q^{24})}. \end{align}

Proof. The main ingredient in proofs of (3.1)–(3.4) is the integer matrix exact covering systems, developed by Cao [Reference Cao6]. Similar treatments were used for deriving the generating functions of four- and six-coloured generalized Frobenius partitions; see [Reference Baruah and Sarmah3, Reference Baruah and Sarmah4] for a detailed account of such applications.

We only present the proof of (3.1), and the remaining cases can be demonstrated in a similar manner.

First, we adopt the matrix

\begin{align*} B_1=\begin{pmatrix} -1 &1 &0\\ 1 &0 &1\\ 1 &0 &-1\\ \end{pmatrix}. \end{align*}

Then, the congruences $B_1\mathbf{r}\equiv0\pmod2$ satisfy that

\begin{align*} \begin{cases} -r_1+r_2\equiv0 &\pmod2,\\ r_1+r_3\equiv0 &\pmod2,\\ r_1-r_3\equiv0 &\pmod2. \end{cases} \end{align*}

Then, the above congruences contain two solutions. Namely, $ \begin{pmatrix} 0 \\ 0 \\ 0\\ \end{pmatrix} $ and $ \begin{pmatrix} 1 \\ 1 \\ 1\\ \end{pmatrix} $ modulo 2. Therefore, we get the following integer matrix exact covering systems

\begin{align*} \begin{pmatrix} r_1 \\ r_2 \\ r_3\\ \end{pmatrix}&=\begin{pmatrix} -1 &1 &0\\ 1 &0 &1\\ 1 &0 &-1\\ \end{pmatrix}\begin{pmatrix} n_1 \\ n_2 \\ n_3\\ \end{pmatrix},\\[5pt] \begin{pmatrix} r_1 \\ r_2 \\ r_3\\ \end{pmatrix}&=\begin{pmatrix} -1 &1 &0\\ 1 &0 &1\\ 1 &0 &-1\\ \end{pmatrix}\begin{pmatrix} n_1 \\ n_2 \\ n_3\\ \end{pmatrix}+\begin{pmatrix} 0 \\ 1 \\ 0\\ \end{pmatrix}. \end{align*}

Using the above integer matrix exact covering systems, we obtain that

\begin{align*} \sum^{\infty}_{r_1,r_2,r_3=-\infty} &\, q^{3\sum_{i=1}^3 r^2_i+3\sum_{1\leq i \lt j\leq3}r_ir_j}\\ &=\sum^{\infty}_{n_1,n_2,n_3=-\infty}q^{6n^2_1+3n^2_2+3n^2_3} +\sum^{\infty}_{n_1,n_2,n_3=-\infty}q^{6n^2_1+6n_1+3n^2_2+3n_2+3n^2_3+3n_3+3}\\ &=\dfrac{E(q^6)^8E(q^{12})}{E(q^3)^4E(q^{24})^2} +8q^3\dfrac{E(q^{12})^3E(q^{24})^2}{E(q^6)^2}, \end{align*}

which is nothing but (3.1). For (3.2) and (3.3), we also adopt the matrix B 1 and utilizing a similar strategy. However, for (3.4), we need the following matrix

\begin{align*} B_2=\begin{pmatrix} 1 &0 &1\\ 1 &0 &-1\\ 1 &1 &0\\ \end{pmatrix}. \end{align*}

This completes the proof of Lemma 3.1.

Lemma 3.2. The constant term of ${\left(\sum^{\infty}_{r=-\infty}a^rq^{r^2}\right)}^{12}$ is

(3.5)\begin{align} &\textrm{CT}_a{\left(\left(\sum^{\infty}_{r=-\infty} a^rq^{r^2}\right)^{12}\right)}\nonumber\\ &\quad=a(q^2)^4\sum^{\infty}_{r_1,r_2,r_3=-\infty} q^{6\sum_{i=1}^3 r^2_i+6\sum_{1\leq i \lt j\leq3}r_ir_j}\nonumber\\ &\qquad+108qa(q^2)^2\dfrac{E(q^6)^6}{E(q^2)^2} \sum_{r_1,r_2,r_3=-\infty}^{\infty}q^{6\sum_{i=1}^3 r^2_i +6\sum_{1\leq i \lt j\leq3}r_ir_j+2r_1+2r_2+4r_3}\nonumber\\ &\qquad+216q^4a(q^2)\dfrac{E(q^6)^9}{E(q^3)^3} \sum^{\infty}_{r_1,r_2,r_3=-\infty}q^{6\sum_{i=1}^3r^2_i +6\sum_{1\leq i \lt j\leq3}r_ir_j+6r_1+6r_2+4r_3}\nonumber\\ &\qquad+486q^4\dfrac{E(q^6)^{12}}{E(q^2)^4} \sum^{\infty}_{r_1,r_2,r_3=-\infty}q^{6\sum_{i=1}^3 r^2_i +6r_1r_2-6r_1r_3-6r_2r_3+4r_1+4r_2}. \end{align}

Proof. Hirschhorn [Reference Hirschhorn15] proved the following identity

(3.6)\begin{align} {\left(\sum^{\infty}_{r=-\infty}a^rq^{r^2}\right)}^3 &=a(q^2)\sum^{\infty}_{r=-\infty}a^{3r}q^{3r^2}\nonumber\\ &\quad+3q\frac{E(q^6)^3}{E(q^2)} {\left(a\sum^{\infty}_{r=-\infty}a^{3r}q^{3r^2+2r} +a^{-1}\sum^{\infty}_{r=-\infty}a^{-3r}q^{3r^2+2r}\right)}, \end{align}

where a(q) is defined as in (1.2). With the help of (3.6), we obtain that

\begin{align*} &\textrm{CT}_a{\left(\left(\sum^{\infty}_{r=-\infty} a^rq^{r^2}\right)^{12}\right)}\\ &\quad=a(q^2)^4\sum^{\infty}_{r_1,r_2,r_3=-\infty} q^{6\sum_{i=1}^3 r^2_i+6\sum_{1\leq i \lt j\leq3} r_ir_j}\\ &\qquad+108q^2a(q^2)^2\frac{E(q^6)^6}{E(q^2)^2} \sum^{\infty}_{r_1,r_2,r_3=-\infty} q^{6\sum_{i=1}^3r^2_i+6\sum_{1\leq i \lt j\leq3} r_ir_j+2r_1+2r_2+4r_3}\\ &\qquad+216q^4a(q^2)\dfrac{E(q^6)^9}{E(q^3)^3}\sum^{\infty}_{r_1,r_2,r_3=-\infty} q^{6\sum_{i=1}^3 r^2_i+6\sum_{1\leq i \lt j\leq3} r_ir_j+6r_1+6r_2+4r_3}\\ &\qquad+486q^4\dfrac{E(q^6)^{12}}{E(q^2)^4}\sum^{\infty}_{r_1,r_2,r_3=-\infty} q^{6\sum_{i=1}^3r^2_i+6r_1r_2-6r_1r_3-6r_2r_3+4r_1+4r_2}, \end{align*}

which is nothing but (3.5).

We therefore complete the proof of Lemma 3.2.

Now, it is time to prove Theorem 1.1.

Proof of Theorem 1.1

In view of (3.5), we deduce that

(3.7)\begin{align} &\textrm{CT}_a{\left(\left(\sum^{\infty}_{r=-\infty} a^rq^{r^2}\right)^{12}\right)}\nonumber\\ &\quad=\sum_{\substack{m_1+m_2+\cdots+m_{12}=0\\ m_1,m_2,\ldots,m_{12}=-\infty}}^\infty q^{\sum_{i=1}^{12}m^2_i}\nonumber\\ &\quad=\sum^{\infty}_{m_1,\ldots,m_{11}=-\infty} q^{2\sum_{i=1}^{11}m^2_i+2\sum_{1\leq i \lt j\leq11}m_im_j}\nonumber\\ &\quad=a(q^2)^4\sum^{\infty}_{r_1,r_2,r_3=-\infty} q^{6\sum_{i=1}^3 r^2_i+6\sum_{1\leq i \lt j\leq3}r_ir_j}\nonumber\\ &\qquad+108q^2a(q^2)^2\dfrac{E(q^6)^6}{E(q^2)^2} \sum^{\infty}_{r_1,r_2,r_3=-\infty}q^{6\sum_{i=1}^3 r^2_i +6\sum_{1\leq i \lt j\leq3}r_ir_j+2r_1+2r_2+4r_3}\nonumber\\ &\qquad+216q^4a(q^2)\dfrac{E(q^6)^9}{E(q^2)^3} \sum^{\infty}_{r_1,r_2,r_3=-\infty}q^{6\sum_{i=1}^3 r^2_i +6\sum_{1\leq i \lt j\leq3}r_ir_j+6r_1+6r_2+4r_3}\nonumber\\ &\qquad+486q^4\dfrac{E(q^6)^{12}}{E(q^2)^4} \sum^{\infty}_{r_1,r_2,r_3=-\infty}q^{6\sum_{i=1}^3 r^2_i +6r_1r_2-6r_1r_3-6r_2r_3+4r_1+4r_2}. \end{align}

Moreover, Andrews [Reference Andrews2, Theorem 5.2] established the following expression for $\textrm{C}\Phi_k(q)$, namely,

(3.8)\begin{align} \textrm{C}\Phi_k(q)=\dfrac{1}{E(q)^k} \sum_{m_1,m_2,\ldots,m_{k-1}=-\infty}^\infty q^{\sum_{i=1}^{k-1}m^2_i+\sum_{1\leq i \lt j\leq k-1}m_im_j}. \end{align}

The identity (1.3) follows from (3.1)–(3.4), (3.7) and (3.8).

This finishes the proof of Theorem 1.1.

Next, we are in a position to prove Theorem 1.2.

In what follows, all congruences are modulo 81 unless otherwise specified.

Proof of Theorem 1.2

According to (2.10) and (2.11), we find that

(3.9)\begin{align} \textrm{C}\Phi_{12}(q) &\equiv\dfrac{a(q)^4}{E(q)^{12}}\bigg(\dfrac{E(q^6)^8E(q^{12})} {E(q^3)^4E(q^{24})^2}+8q^3\dfrac{E(q^{12})^3E(q^{24})^2}{E(q^6)^2}\bigg)\nonumber\\ &\quad+27q\dfrac{E(q^3)^2}{E(q)^2}\bigg(\dfrac{E(q^4)E(q^6)^4}{E(q^2)^2E(q^8)^2} +q\dfrac{E(q^3)^2E(q^{12})E(q^{24})}{E(q)^2E(q^8)}\bigg)\nonumber\\ &\quad+54q^2E(q^3)^4\bigg(\dfrac{E(q^2)E(q^4)E(q^6)^5E(q^{24})} {E(q)E(q^3)E(q^8)E(q^{12})^2}+2\dfrac{E(q^6)E(q^8)E(q^{12})^3} {E(q^2)E(q^{24})}\bigg). \end{align}

Next, we consider the following three auxiliary functions, defined by

(3.10)\begin{align} \sum_{n=0}^\infty g_1(n)q^n &:=\dfrac{a(q)^4}{E(q)^{12}} \bigg(\dfrac{E(q^6)^8E(q^{12})}{E(q^3)^4E(q^{24})^2} +8q^3\dfrac{E(q^{12})^3E(q^{24})^2}{E(q^6)^2}\bigg), \end{align}
(3.11)\begin{align} \sum_{n=0}^\infty g_2(n)q^n &:=27q\dfrac{E(q^3)^2}{E(q)^2} \bigg(\dfrac{E(q^4)E(q^6)^4}{E(q^2)^2E(q^8)^2}+q\dfrac{E(q^3)^2E (q^{12})E(q^{24})}{E(q)^2E(q^8)}\bigg), \end{align}
(3.12)\begin{align} \sum_{n=0}^\infty g_3(n)q^n &:=54q^2E(q^3)^4\bigg(\dfrac{E(q^2)E(q^4) E(q^6)^5E(q^{24})}{E(q)E(q^3)E(q^8)E(q^{12})^2}+2 \dfrac{E(q^6)E(q^8)E(q^{12})^3}{E(q^2)E(q^{24})}\bigg). \end{align}

Substituting (2.8) and (2.9) into (3.10), extracting all the terms of the form $q^{3n+2}$, after simplification, we deduce that

\begin{align*} \sum_{n=0}^\infty g_1(3n+2)q^n\equiv27a(q)^{10} \dfrac{E(q^2)^8E(q^3)^{18}E(q^4)}{E(q)^{46}E(q^8)^2} +54qa(q)^{10}\dfrac{E(q^3)^{18}E(q^4)^3E(q^8)^2}{E(q)^{42}E(q^2)^2}. \end{align*}

Thanks to (2.10) and (2.11),

(3.13)\begin{align} \sum_{n=0}^\infty g_1(3n+2)q^n\equiv27E(q^3)^4 \bigg(\dfrac{E(q^2)^8E(q^4)}{E(q)^4E(q^8)^2} +2q\dfrac{E(q^4)^3E(q^8)^2}{E(q^2)^2}\bigg). \end{align}

The congruence (1.5) follows from (3.9) and (3.13) immediately.

Moreover, it follows from (3.13) that

(3.14)\begin{align} \sum_{n=0}^\infty &\,g_1(3n+2)q^n\nonumber\\ &\equiv27E(q^3)^4\bigg(\dfrac{E(q^2)^{10}}{E(q)^4E(q^4)^4} \cdot\dfrac{E(q^4)^5}{E(q^2)^2E(q^8)^2} +2q\dfrac{E(q^4)^4}{E(q^2)^2}\cdot \dfrac{E(q^8)^2}{E(q^4)}\bigg). \end{align}

Substituting (2.3) and (2.4) into (3.14), after some tedious but straightforward calculations, we deduce that

(3.15)\begin{align} \sum_{n=0}^\infty g_1(9n+5)q^n &\equiv27\bigg\{\dfrac{E(q^2)^8E(q^4)^{11}} {E(q^8)^6}-\dfrac{E(q^2)^{10}E(q^4)}{E(q^8)^2}\cdot E(q)^4\notag\\ &\quad-qE(q^4)^3E(q^8)^2\cdot\big(E(q)^4\big)^2 +q^2E(q^2)^2E(q^4)E(q^8)^6\cdot E(q)^4\bigg\} \end{align}

and

(3.16)\begin{align} \sum_{n=0}^\infty g_1(9n+8)q^n &\equiv27\Bigg\{\dfrac{E(q^4)^{19}} {E(q^2)^8E(q^8)^6}\cdot\big(E(q)^4\big)^2 -\dfrac{E(q^2)^{32}E(q^8)^2}{E(q^4)^{13}}\cdot \bigg(\dfrac{1}{E(q)^4}\bigg)^2\nonumber\\ &\quad-q\dfrac{E(q^4)^{17}}{E(q^2)^6E(q^8)^2}\cdot E(q)^4 -q\dfrac{E(q^2)^{10}E(q^8)^6}{E(q^4)^7}\cdot E(q)^4\Bigg\}. \end{align}

Substituting (2.1) and (2.2) into (31.5) and (3.16), upon simplification, we further obtain that

(3.17)\begin{align} \sum_{n=0}^\infty g_1(9n+5)q^n &\equiv27\bigg({-}q\dfrac{E(q^4)^{23}} {E(q^2)^4E(q^8)^6}+q\dfrac{E(q^2)^{12}E(q^8)^2}{E(q^4)} +q^3\dfrac{E(q^2)^4E(q^8)^{10}}{E(q^4)}\bigg), \end{align}
(3.18)\begin{align} \sum_{n=0}^\infty g_1(9n+8)q^n &\equiv27\bigg(\dfrac{E(q^4)^{39}} {E(q^2)^{12}E(q^8)^{14}}-\dfrac{E(q^2)^4E(q^4)^{15}}{E(q^8)^6} -q^2\dfrac{E(q^4)^{15}E(q^8)^2}{E(q^2)^4}\bigg). \end{align}

Now, we recall Horschhorn’s version of parameterized identities (see [Reference Hirschhorn17, Chapter 35, Equations (35.1.1)–(35.1.6)]), whose idea comes from [Reference Alaca, Alaca and Williams1].

(3.19)\begin{align} E(q) &=s^{1/2}t^{1/24}(1-2qt)^{1/2}(1+qt)^{1/8} (1+2qt)^{1/6}(1+4qt)^{1/8}, \end{align}
(3.20)\begin{align} E(q^2) &=s^{1/2}t^{1/12}(1-2qt)^{1/4}(1+qt)^{1/4} (1+2qt)^{1/12}(1+4qt)^{1/4}, \end{align}
(3.21)\begin{align} E(q^3) &=s^{1/2}t^{1/8}(1-2qt)^{1/6}(1+qt)^{1/24} (1+2qt)^{1/2}(1+4qt)^{1/24}, \end{align}
(3.22)\begin{align} E(q^4) &=s^{1/2}t^{1/6}(1-2qt)^{1/8}(1+qt)^{1/2} (1+2qt)^{1/24}(1+4qt)^{1/8}, \end{align}
(3.23)\begin{align} E(q^6) &=s^{1/2}t^{1/4}(1-2qt)^{1/12}(1+qt)^{1/12} (1+2qt)^{1/4}(1+4qt)^{1/12}, \end{align}
(3.24)\begin{align} E(q^{12}) &=s^{1/2}t^{1/2}(1-2qt)^{1/24}(1+qt)^{1/6} (1+2qt)^{1/8}(1+4qt)^{1/24}, \end{align}

where

\begin{align*} s:=s(q)=\dfrac{E(q)^2E(q^4)^2E(q^6)^{15}}{E(q^2)^5E(q^3)^6E(q^{12})^6} \qquad\textrm{and}\qquad t:=t(q)=\dfrac{E(q^2)^3E(q^3)^3E(q^{12})^6}{E(q)E(q^4)^2E(q^6)^9}. \end{align*}

It follows immediately from the parameterized identities (3.19)–(3.24) that

\begin{align*} &{\left({-}\dfrac{E(q^2)^{23}}{E(q)^4E(q^4)^6}+\dfrac{E(q)^{12}E(q^4)^2}{E(q^2)} +q\dfrac{E(q)^4E(q^4)^{10}}{E(q^2)}\right)} \cdot\dfrac{E(q)^3E(q^4)^2E(q^6)^{12}}{E(q^2)^7E(q^3)^5E(q^{12})^4}\\ &\qquad=-15qs^7t^2(1-2qt)^3(1+qt)^5(1+2qt)(1+4qt)\equiv0\pmod{3} \end{align*}

and

\begin{align*} &{\left(\dfrac{E(q^2)^{39}}{E(q)^{12}E(q^4)^{14}} -\dfrac{E(q)^4E(q^2)^{15}}{E(q^4)^6}-q\dfrac{E(q^2)^{15}E(q^4)^2}{E(q)^4}\right)}\cdot \dfrac{E(q)^3E(q^4)^3E(q^6)^{15}}{E(q^2)^8E(q^3)^5E(q^{12})^7}\\ &\qquad=15qs^7t(1-2qt)^2(1+qt)^4(1+2qt)(1+4qt)^3\equiv0\pmod{3}. \end{align*}

Since

\begin{align*} \dfrac{E(q)^3E(q^4)^2E(q^6)^{12}}{E(q^2)^7E(q^3)^5E(q^{12})^4} \qquad\textrm{and}\qquad\dfrac{E(q)^3E(q^4)^3E(q^6)^{15}}{E(q^2)^8E(q^3)^5E(q^{12})^7} \end{align*}

are invertible in the ring $\mathbb{Z}/3\mathbb{Z}[[q]]$, we deduce that

(3.25)\begin{align} -\dfrac{E(q^2)^{23}}{E(q)^4E(q^4)^6}+\dfrac{E(q)^{12}E(q^4)^2}{E(q^2)} +q\dfrac{E(q)^4E(q^4)^{10}}{E(q^2)} &\equiv0\pmod{3}, \end{align}
(3.26)\begin{align} \dfrac{E(q^2)^{39}}{E(q)^{12}E(q^4)^{14}}-\dfrac{E(q)^4E(q^2)^{15}}{E(q^4)^6} -q\dfrac{E(q^2)^{15}E(q^4)^2}{E(q)^4} &\equiv0\pmod{3}. \end{align}

The congruences (3.17) and (3.18), together with (3.25) and (3.26), imply that for any $n\geq0$,

(3.27)\begin{align} g_1(9n+5)\equiv g_1(9n+8)\equiv0. \end{align}

Similarly, from (3.11), we find that

\begin{align*} \sum_{n=0}^\infty g_2(n)q^n &\equiv27\bigg(qE(q^3)E(q^6)^4\cdot \dfrac{E(q)}{E(q^2)^2}\cdot\dfrac{E(q^4)}{E(q^8)^2}\\ &\quad+q^2E(q^3)^3E(q^{12})E(q^{24})\cdot\dfrac{E(q^2)}{E(q)E(q^4)} \cdot\dfrac{E(q^4)}{E(q^2)E(q^8)}\bigg). \end{align*}

With the help of (2.6) and (2.7), we further obtain that

(3.28)\begin{align} \sum_{n=0}^\infty g_2(3n+2)q^n &\equiv27\bigg({-}\dfrac{E(q)^4E(q^2)^6E(q^4)^{11}}{E(q^8)^6} +\dfrac{E(q^2)^{16}E(q^4)^{17}}{E(q)^8E(q^8)^{10}}\nonumber\\ &\quad+q\dfrac{E(q^2)^8E(q^4)^9}{E(q^8)^2} -q\dfrac{E(q)^{12}E(q^4)^3E(q^8)^2}{E(q^2)^2}\nonumber\\ &\quad+q^2E(q)^8E(q^4)E(q^8)^6 +q^3\dfrac{E(q^2)^{14}E(q^8)^{10}}{E(q)^4E(q^4)^5}\bigg). \end{align}

Plugging (2.1) and (2.2) into (3.28), after simplification, we obtain that

(3.29)\begin{align} \sum_{n=0}^\infty g_2(3n+2)q^n &\equiv 27\bigg(\dfrac{E(q^4)^{45}}{E(q^2)^{12}E(q^8)^{18}} -\dfrac{E(q^2)^4E(q^4)^{21}}{E(q^8)^{10}} +q\dfrac{E(q^4)^{33}}{E(q^2)^8E(q^8)^{10}}\nonumber\\ &\quad-q\dfrac{E(q^2)^8E(q^4)^9}{E(q^8)^2} -q^2\dfrac{E(q^4)^{21}}{E(q^2)^4E(q^8)^2}-q^3E(q^4)^9E(q^8)^6\bigg). \end{align}

According to the parameterized identities (3.19)–(3.24), we find that

\begin{align*} &{\left(\dfrac{E(q^2)^{45}}{E(q)^{12}E(q^4)^{18}} -\dfrac{E(q)^4E(q^2)^{21}}{E(q^4)^{10}} -q\dfrac{E(q^2)^{21}}{E(q)^4E(q^4)^2}\right)}\cdot \dfrac{E(q)^3E(q^4)^4E(q^6)^{13}}{E(q^2)^8E(q^3)^5E(q^{12})^6}\nonumber\\ &\qquad=15qs^8t(1-2qt)^3(1+qt)^4(1+2qt)(1+4qt)^4\equiv0\pmod{3} \end{align*}

and

\begin{align*} &{\left(\dfrac{E(q^2)^{33}}{E(q)^8E(q^4)^{10}}-\dfrac{E(q)^8E(q^2)^9}{E(q^4)^2} -qE(q^2)^9E(q^4)^6\right)}\cdot \dfrac{E(q)E(q^6)^7}{E(q^2)^2E(q^3)^3E(q^{12})^2}\\ &\qquad=15qs^8t^2(1-2qt)^3(1+qt)^5(1+2qt)(1+4qt)^3\equiv0\pmod{3}. \end{align*}

Since

\begin{align*} \dfrac{E(q)^3E(q^4)^2E(q^6)^{13}}{E(q^2)^8E(q^3)^5E(q^{12})^6} \qquad\textrm{and}\qquad\dfrac{E(q)E(q^6)^7}{E(q^2)^2E(q^3)^3E(q^{12})^2} \end{align*}

are invertible in the ring $\mathbb{Z}/3\mathbb{Z}[[q]]$, we obtain that

(3.30)\begin{align} \dfrac{E(q^2)^{45}}{E(q)^{12}E(q^4)^{18}} -\dfrac{E(q)^4E(q^2)^{21}}{E(q^4)^{10}} -q\dfrac{E(q^2)^{21}}{E(q)^4E(q^4)^2} &\equiv0\pmod{3}, \end{align}
(3.31)\begin{align} \dfrac{E(q^2)^{33}}{E(q)^8E(q^4)^{10}} -\dfrac{E(q)^8E(q^2)^9}{E(q^4)^2}-qE(q^2)^9E(q^4)^6 &\equiv0\pmod{3}. \end{align}

According to (3.29)–(3.31), we find that for any $n\geq0$,

(3.32)\begin{align} g_2(3n+2)\equiv0. \end{align}

Finally, from (3.12), we find that

\begin{align*} \sum_{n=0}^\infty g_3(n)q^n &=-27 \bigg(q^2\dfrac{E(q^3)^3E(q^6)^5E(q^{24})}{E(q^{12})^2} \cdot\dfrac{E(q^2)^2}{E(q)}\cdot\dfrac{E(q^4)}{E(q^2)E(q^8)}\nonumber\\ &\quad-q^2\dfrac{E(q^3)^4E(q^6)E(q^{12})^3}{E(q^{24})} \cdot\dfrac{E(q^4)^2}{E(q^2)}\cdot\dfrac{E(q^8)}{E(q^4)^2}\bigg). \end{align*}

Thanks to (2.4), (2.5), (2.7) and (2.11), we further arrive at

(3.33)\begin{align} \sum_{n=0}^\infty g_3(3n+2)q^n &\equiv27 \bigg(\dfrac{E(q)^4E(q^2)^6E(q^4)^{11}}{E(q^8)^6} -\dfrac{E(q)^8E(q^4)^{25}}{E(q^2)^8E(q^8)^{10}}\nonumber\\ &\quad-q\dfrac{E(q^2)^8E(q^4)^9}{E(q^8)^2} -q^2\dfrac{E(q)^4E(q^4)^{11}E(q^8)^2}{E(q^2)^2}\bigg). \end{align}

Substituting (2.1) into (3.33), upon simplification, we obtain that

\begin{align*} \sum_{n=0}^\infty g_3(3n+2)q^n &\equiv27\bigg({-}\dfrac{E(q^4)^{45}}{E(q^2)^{12}E(q^8)^{18}} +\dfrac{E(q^2)^4E(q^4)^{21}}{E(q^8)^{10}} +q^2\dfrac{E(q^4)^{21}}{E(q^2)^4E(q^8)^2}\bigg)\\ &\quad+27q\bigg({-}\dfrac{E(q^4)^{33}}{E(q^2)^8E(q^8)^{10}} +\dfrac{E(q^2)^8E(q^4)^9}{E(q^8)^2}+q^2E(q^4)^9E(q^8)^6\bigg). \end{align*}

According to (3.30) and (3.31), we conclude that for any $n\geq0$,

(3.34)\begin{align} g_3(3n+2)\equiv0. \end{align}

The congruences (1.6) and (1.7) follow from (3.9)–(3.12), (3.27), (3.32) and (3.34).

We therefore complete the proof of Theorem 1.2.

Acknowledgements

The authors would like to acknowledge two anonymous referees for their careful reading and many helpful suggestions, which improved the quality of this paper to a great extent.

Funding Statement

Su-Ping Cui was partially supported by the National Natural Science Foundation of China (No. 12001309) and the Foreign Youth Exchange Program of China Association of Science and Technology. Nancy S. S. Gu was partially supported by the National Natural Science Foundation of China (No. 12171255). Dazhao Tang is the corresponding author. Dazhao Tang was partially supported by the National Natural Science Foundation of China (No. 12201093), the Natural Science Foundation Project of Chongqing CSTB (No. CSTB2022NSCQ–MSX0387), the Science and Technology Research Program of Chongqing Municipal Education Commission (No. KJQN202200509) and the Doctoral start-up research grant (No. 21XLB038) of Chongqing Normal University.

References

Alaca, A., Alaca, S., Williams, K.S., On the two-dimensional theta functions of the Borweins, Acta Arith. 124 (2006), no. 2, 177195.CrossRefGoogle Scholar
Andrews, G. E., Generalized Frobenius partitions, Mem. Amer. Math. Soc. 49 (1984), no. 301, Google Scholar
Baruah, N. D., Sarmah, B. K., Congruences for generalized Frobenius partitions with 4 colors, Discrete Math. 311 (2011), no. 17, 18921902.CrossRefGoogle Scholar
Baruah, N. D., Sarmah, B. K., Generalized Frobenius partitions with 6 colors, Ramanujan J. 38 (2015), no. 2, 361382.CrossRefGoogle Scholar
Berndt, B. C., Ramanujan’s Notebooks. Part III., Springer-Verlag, New York, 1991.CrossRefGoogle Scholar
Cao, Z., Integer matrix exact covering systems and product identities for theta functions, Int. Math. Res. Not. IMRN, no. 19, (2011), 44714514.Google Scholar
Chan, H., Wang, L., Yang, Y., Congruences modulo 5 and 7 for 4-colored generalized Frobenius partitions, J. Aust. Math. Soc. 103 (2017), no. 2, 157176.CrossRefGoogle Scholar
Chan, H., Wang, L., Yang, Y., Modular forms and k-colored generalized Frobenius partitions, Trans. Amer. Math. Soc. 371 (2019), no.3, 21592205.CrossRefGoogle Scholar
Cui, S.-P., Gu, N. S. S., Congruences modulo powers of 2 for generalized Frobenius partitions with six colors, Int. J. Number Theory 15 (2019), no. 6, 11731181.CrossRefGoogle Scholar
Cui, S.-P., Gu, N. S. S., Huang, A. X., Congruence properties for a certain kind of partition functions, Adv. Math. 290 (2016), 739772.CrossRefGoogle Scholar
Cui, S.-P., Gu, N. S. S., Tang, D., The method of constant terms and k-colored generalized Frobenius partitions, J. Combin. Theory Ser. A 203 (2024), CrossRefGoogle Scholar
Eichhorn, D., Sellers, J. A., Computational proofs of congruences for 2-colored Frobenius partitions, Int. J. Math. Math. Sci. 29 (2002), no. 6, 333340.CrossRefGoogle Scholar
Garvan, F. G., Sellers, J. A., Congruences for generalized Frobenius partitions with an arbitrarily large number of colors, Integers 14 (2014), Google Scholar
Gu, C., Wang, L., Xia, E. X. W., Congruences modulo powers of 3 for generalized Frobenius partitions with six colors, Acta Arith. 175 (2016), no. 3, 291300.Google Scholar
Hirschhorn, M. D., A letter from Fitzroy House, Amer. Math. Monthly 115 (2008), no. 6, 563566.CrossRefGoogle Scholar
Hirschhorn, M. D., Some congruences for 6-colored generalized Frobenius partitions, Ramanujan J. 40 (2016), no. 3, 463471.CrossRefGoogle Scholar
Hirschhorn, M. D., The Power of q. A personal journey. Developments in Mathematics, 49, Springer, Cham, 2017.Google Scholar
Hirschhorn, M. D., Garvan, F., Borwein, J., Cubic analogues of the Jacobian theta function $\unicode{x03B8}(z,q)$, Canad. J. Math. 45 (1993), no. 4, 673694.CrossRefGoogle Scholar
Hirschhorn, M. D., Sellers, J. A., Arithmetic relations for overpartitions, J. Combin. Math. Combin. Comput. 53 (2005), 6573.Google Scholar
Hirschhorn, M. D., Sellers, J. A., Arithmetic properties of partitions with odd parts distinct, Ramanujan J. 22 (2010), no. 3, 273284.CrossRefGoogle Scholar
Hirschhorn, M. D., Sellers, J. A., Infinitely many congruences modulo 5 for 4-colored Frobenius partitions, Ramanujan J. 40 (2016), no. 1, 193200.CrossRefGoogle Scholar
Jameson, M., Wieczorek, M., Congruences for modular forms and generalized Frobenius partitions, Ramanujan J. 52 (2020), no. 3 541553.CrossRefGoogle Scholar
Jiang, Y., Rolen, L., Woodbury, M., Generalized Frobenius partitions, Motzkin paths, and Jacobi forms, J. Combin. Theory Ser. A 190 (2022), CrossRefGoogle Scholar
Kolitsch, L. W., An extension of a congruence by Andrews for generalized Frobenius partitions, J. Combin. Theory Ser. A 45 (1987), no. 1, 3139.CrossRefGoogle Scholar
Lin, B. L. S., New Ramanujan type congruence modulo 7 for 4-colored generalized Frobenius partitions, Int. J. Number Theory 10 (2014), no. 3, 637639.CrossRefGoogle Scholar
Lovejoy, J., Ramanujan-type congruences for three colored Frobenius partitions, J. Number Theory 85 (2000), no. 2, 283290.CrossRefGoogle Scholar
Mestrige, S. P., Congruences for a class of eta-quotients and their applications, Ramanujan J. 58 (2022), no. 2, 407433.CrossRefGoogle Scholar
Ono, K., Congruences for Frobenius partitions, J. Number Theory 57 (1996), no. 1, 170180.CrossRefGoogle Scholar
Paule, P., Radu, C.-S., The Andrews-Sellers family of partition congruences, Adv. Math. 230 (2012), no. 3, 819838.CrossRefGoogle ScholarPubMed
Qu, Y., A proof of a result of Hirschhorn and Sellers on 4-colored generalized Frobenius partitions, Ars Combin. 150 (2020), 99104.Google Scholar
Sellers, J. A., An unexpected congruence modulo 5 for 4-colored generalized Frobenius partitions, J. Indian Math. Soc.(N.S.), 2013 Special volume to commemorate the 125th birth anniversary of Srinivasa Ramanujan, 97103.Google Scholar
Tang, D., Congruences modulo powers of 3 for 6-colored generalized Frobenius partitions, Contrib. Discrete Math., to appear.Google Scholar
Tang, D., Congruence properties of 8- and 9-colored generalized Frobenius partitions modulo 5, submitted.Google Scholar
Wang, C., Zhang, W., A unified proof of Ramanujan-type congruences modulo 5 for 4-colored generalized Frobenius partitions, J. Math. Anal. Appl. 447 (2017), no. 1, 542549.CrossRefGoogle Scholar
Wang, L., Arithmetic identities and congruences for partition triples with 3-cores, Int. J. Number Theory 12 (2016), no. 4, 9951110.CrossRefGoogle Scholar
Wang, L., Congruences modulo powers of 3 for 3- and 9-colored generalized Frobenius partitions, Discrete Math. 341 (2018), no. 12, 33703384.CrossRefGoogle Scholar
Xia, E. X. W., Proof of a conjecture of Baruah and Sarmah on generalized Frobenius partitions with 6 colors, J. Number Theory 147 (2015), 852860.CrossRefGoogle Scholar
Xia, E. X. W., A Ramanujan-type congruence modulo 5 for 4-colored generalized Frobenius partitions, Ramanujan J. 39 (2016), no. 3, 567576.CrossRefGoogle Scholar
Xiong, X., Congruences modulo powers of 5 for three colored Frobenius partitions, arXiv:1003.0072 [math NT]. 2010.Google Scholar
Yao, O. X. M., Xia, E. X. W., New Ramanujan-like congruences modulo powers of 2 and 3 for overpartitions, J. Number Theory 133 (2013), no. 6, 19321949.CrossRefGoogle Scholar
Zhang, W., Wang, C., An unexpected Ramanujan-type congruence modulo 7 for 4-colored generalized Frobenius partitions, Ramanujan J. 44 (2017), no. 1, 125131.CrossRefGoogle Scholar