Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-07T06:27:08.570Z Has data issue: false hasContentIssue false

Simple eigenvalues and bifurcation for a multiparameter problem

Published online by Cambridge University Press:  20 January 2009

D. F. McGhee
Affiliation:
Department of MathematicsUniversity of StrathclydeGlasgow G1 1XH, Scotland
M. H. Sallam
Affiliation:
Department of MathematicsUniversity of MonofiyaCairo, Egypt
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We are concerned with the problem of bifurcation of solutions of a non-linear multiparameter problem at a simple eigenvalue of the linearised problem.

Let X and Y be real Banach spaces, and let A, Bi, i = 1, …, nB(X, Y). Let : Rn × XY be a non-linear mapping. We consider the equation

where

and λ=(λ1, λ2,…,λn) ∈ Rn is an n-tuple of spectral parameters.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1988

References

REFERENCES

1.Binding, P., Perturbation and bifurcation of non-singular multiparametric eigenvalues. Nonlinear Anal. 8 (1984), 335352.CrossRefGoogle Scholar
2.Chow, S.-N. and Hale, J. K., Methods of Bifurcation Theory (Springer-Verlag, New York, 1982).CrossRefGoogle Scholar
3.Crandall, M. G. and Rabinowitz, P. H., Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971), 321340.CrossRefGoogle Scholar
4.Dieudonne, J., Foundations of Modern Analysis (Academic Press, New York, 1960).Google Scholar
5.Hale, J. K., Bifurcation from simple eigenvalues for several parameter families, Nonlinear Anal. 2(1978), 491497.CrossRefGoogle Scholar
6.Kato, T., Perturbation Theory for Linear Operators (Springer-Verlag, Berlin, 1966).Google Scholar
7.Shearer, M., On the null space of linear Fredholm operators depending on several parameters, Math. Proc. Cambridge Philos. Soc. 84 (1978), 131142.CrossRefGoogle Scholar
8.Turyn, L., Perturbation of linked eigenvalue problems, J. Nonlinear Anal. 7 (1983), 3540.CrossRefGoogle Scholar
9.Zachmann, D. W., Multiple solutions of coupled Sturm-Liouville systems, J. Math. Anal. Appl. 54 (1976), 467475.CrossRefGoogle Scholar