Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T17:47:39.059Z Has data issue: false hasContentIssue false

Segal's Spectral Sequence in Twisted Equivariant K-theory for Proper and Discrete Actions

Published online by Cambridge University Press:  23 January 2018

Noé Bárcenas*
Affiliation:
Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Apartado Postal 61-3 Xangari, Morelia, Michoacán 58089, Mexico ([email protected]; [email protected])
Jesús Espinoza
Affiliation:
Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Apartado Postal 61-3 Xangari, Morelia, Michoacán 58089, Mexico ([email protected]; [email protected])
Bernardo Uribe
Affiliation:
Departamento de Matemáticas y Estadística, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla, Colombia ([email protected])
Mario Velásquez
Affiliation:
Departamento de Matemáticas, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 – Edificio Carlos Ortíz, 5to piso, Bogotá D.C., Colombia ([email protected])
*
*Corresponding author.

Abstract

We use a spectral sequence developed by Graeme Segal in order to understand the twisted G-equivariant K-theory for proper and discrete actions. We show that the second page of this spectral sequence is isomorphic to a version of Bredon cohomology with local coefficients in twisted representations. We furthermore explain some phenomena concerning the third differential of the spectral sequence, and recover known results when the twisting comes from finite order elements in discrete torsion.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Antonyan, S A. and Elfving, E., The equivariant homotopy type of G-ANR’s for proper actions of locally compact groups, In Algebraic topology—old and new, Banach Center Publications, Volume 85, pp. 155178 (Polish Academy of Sciences, Institute of Mathematics, Warsaw, 2009).Google Scholar
2. Atiyah, M. F. and Hirzebruch, F., Vector bundles and homogeneous spaces, in Differential geometry, Proceedings of Symposia in Pure Mathematics, Volume 3, pp. 738 (American Mathematical Society, Providence, RI, 1961).Google Scholar
3. Atiyah, M. and Segal, G., Twisted K-theory, Ukr. Mat. Visn. 1(3) (2004), 287330.Google Scholar
4. Atiyah, M. and Segal, G., Twisted K-theory and cohomology, In Inspired by S. S. Chern, Nankai Tracts in Mathematics, Volume 11, pp. 543 (World Scientific, Hackensack, NJ, 2006).Google Scholar
5. Atiyah, M. F. and Singer, I. M., Index theory for skew-adjoint Fredholm operators, Publ. Math. Inst. Hautes Études Sci. (37) (1969), 526.Google Scholar
6. Barcenas, N. and Velasquez, M., Twisted equivariant K-theory and K-homology of Sl3(ℤ), Algebr. Geom. Topol. 14(2) (2014), 823852.Google Scholar
7. Bárcenas, N., Espinoza, J., Joachim, M. and Uribe, B., Universal twist in equivariant K-theory for proper and discrete actions, Proc. Lond. Math. Soc. (3) 108(5) (2014), 13131350.Google Scholar
8. Basu, S. and Sen, D., Representing Bredon cohomology with local coefficients, J. Pure Appl. Algebra 219(9) (2015), 39924015.Google Scholar
9. Braun, V., Twisted K-theory of Lie groups, J. High Energy Phys. 2004(3) (2004), 29.Google Scholar
10. Davis, J. F. and Lück, W., Spaces over a category and assembly maps in isomorphism conjectures in K- and L-theory, K-Theory 15(3) (1998), 201252.Google Scholar
11. Douglas, C. L., On the twisted K-homology of simple Lie groups, Topology 45(6) (2006), 955988.Google Scholar
12. Dwyer, C., Twisted equivariant K-theory for proper actions of discrete groups, K-Theory 38(2) (2008), 95111.Google Scholar
13. Dwyer, W. G. and Spalinski, J., Homotopy theories and model categories (Handbook of Algebraic Topology, Elsevier, 1995).Google Scholar
14. Elmendorf, A. D., Systems of fixed point sets, Trans. Amer. Math. Soc. 277(1) (1983), 275284.Google Scholar
15. Freed, D. S., Hopkins, M. J. and Teleman, C., Loop groups and twisted K-theory I, J. Topol. 4(4) (2011), 737798.Google Scholar
16. Freed, D. S., Hopkins, M. J. and Teleman, C., Loop groups and twisted K-theory III, Ann. of Math. (2) 174(2) (2011), 9471007.Google Scholar
17. Honkasalo, H., The equivariant Serre spectral sequence as an application of a spectral sequence of Spanier, Topology Appl. 90(1–3) (1998), 1119.Google Scholar
18. Kneezel, D. and Kriz, I., Completing Verlinde algebras, J. Algebra 327 (2011), 126140.Google Scholar
19. Lahtinen, A., The Atiyah-Segal completion theorem in twisted K-theory, Algebr. Geom. Topol. 12(4) (2012), 19251940.Google Scholar
20. Leary, I. J. and Degrijse, D., Equivariant vector bundles over classifying spaces for proper actions, Algebr. Geom. Topol. 17 (2017), 131156.Google Scholar
21. Lück, W. and Oliver, B, The completion theorem in K-theory for proper actions of a discrete group, Topology 40 (2001), 585616.Google Scholar
22. Lück, W. and Uribe, B., Equivariant principal bundles and their classifying spaces, Algebr. Geom. Topol. 14(4) (2014), 19251995.Google Scholar
23. Lupercio, E. and Uribe, B., Gerbes over orbifolds and twisted K-theory, Comm. Math. Phys. 245(3) (2004), 449489.Google Scholar
24. Matumoto, T., Equivariant CW complexes and shape theory, Tsukuba J. Math. 13(1) (1989), 157164.CrossRefGoogle Scholar
25. May, J. P. and Sigurdsson, J., Parametrized homotopy theory, Mathematical Surveys and Monographs, Volume 132 (American Mathematical Society, Providence, RI, 2006).Google Scholar
26. Segal, G., Equivariant K-theory, Publ. Math. Inst. Hautes Études Sci. (34) (1968), 129151.Google Scholar
27. Witten, E., D-branes and K-theory, J. High Energy Phys. 1998(12) (1998), 41.Google Scholar