Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T22:01:20.477Z Has data issue: false hasContentIssue false

S3-free 2-fusion systems

Published online by Cambridge University Press:  05 December 2012

Michael Aschbacher*
Affiliation:
Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We develop a theory of 2-fusion systems of even characteristic, and use that theory to show that all S3-free saturated 2-fusion systems are constrained. This supplies a new proof of Glauberman's Theorem on S4-free groups and its various corollaries.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2012

References

1.Aschbacher, M., Finite group theory (Cambridge University Press, 1986).Google Scholar
2.Aschbacher, M., Normal subsystems of fusion systems, Proc. Lond. Math. Soc. 2 (2008), 239271.CrossRefGoogle Scholar
3.Aschbacher, M., Generation of fusion systems of characteristic 2-type, Invent. Math. 2 (2010), 225299.CrossRefGoogle Scholar
4.Aschbacher, M., The generalized Fitting subsystem of a fusion system, Mem. Am. Math. Soc. 2 (2011), 1110.Google Scholar
5.Aschbacher, M. and Smith, S., The classification of quasithin groups, Mathematical Surveys and Monographs, Volume 11 (American Mathematical Society, Providence, RI, 2004).Google Scholar
6.Aschbacher, M., Kessar, R. and Oliver, B., Fusion systems in algebra and topology (Cambridge University Press, 2011).CrossRefGoogle Scholar
7.Broto, C., Castellana, N., Grodal, J., Levi, R. and Oliver, B., Subgroup families controlling p-local finite groups, Proc. Lond. Math. Soc. 2 (2005), 325354.CrossRefGoogle Scholar
8.Broto, C., Levi, R. and Oliver, B., The homotopy theory of fusion systems, J. Am. Math. Soc. 2 (2003), 779856.CrossRefGoogle Scholar
9.Glauberman, G., Factorizations in local subgroups of finite groups, Regional Conference Series in Mathematics, Volume 33 (American Mathematical Society, Providence, RI, 1977).CrossRefGoogle Scholar
10.Goldschmidt, D., 2-fusion in finite groups, Annals Math. 2 (1974), 70117.CrossRefGoogle Scholar
11.Gorenstein, D., Lyons, R. and Solomon, R., The classification of the finite simple groups, Mathematical Surveys and Monographs, Volume 40, Number 3 (American Mathematical Society, Providence, RI, 1999).CrossRefGoogle Scholar
12.Guralnick, R. and Malle, G., Classification of 2F-modules, II, in Finite Groups 2003, Proc. Gainesville Conf. on Finite Groups, pp. 117184 (de Gruyter, New York, 2004).Google Scholar
13.Onofrei, S. and Stancu, R., A characteristic subgroup for fusion systems, J. Alg. 2 (2009), 17051718.CrossRefGoogle Scholar
14.Puig, L., Frobenius categories, J. Alg. 2 (2006), 309357.CrossRefGoogle Scholar
15.Puig, L., Frobenius categories versus Brauer blocks (Birkhäuser, 2009).CrossRefGoogle Scholar
16.Stellmacher, B., A characteristic subgroup of S 4-free groups, Israel J. Math. 2 (1996), 367379.CrossRefGoogle Scholar
17.Thompson, J., Simple 3′-groups, Symp. Math. 2 (1974), 517530.Google Scholar