Published online by Cambridge University Press: 02 February 2006
This paper studies topological and metric rigidity theorems for hypersurfaces in a Euclidean sphere. We first show that an $n({\geq}\,2)$-dimensional complete connected oriented closed hypersurface with non-vanishing Gauss–Kronecker curvature immersed in a Euclidean open hemisphere is diffeomorphic to a Euclidean $n$-sphere. We also show that an $n({\geq}\,2)$-dimensional complete connected orientable hypersurface immersed in a unit sphere $S^{n+1}$ whose Gauss image is contained in a closed geodesic ball of radius less than $\pi/2$ in $S^{n+1}$ is diffeomorphic to a sphere. Finally, we prove that an $n({\geq}\,2)$-dimensional connected closed orientable hypersurface in $S^{n+1}$ with constant scalar curvature greater than $n(n-1)$ and Gauss image contained in an open hemisphere is totally umbilic.