Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T21:29:36.538Z Has data issue: false hasContentIssue false

Repunit Lehmer numbers

Published online by Cambridge University Press:  28 October 2010

Javier Cilleruelo
Affiliation:
Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain ([email protected])
Florian Luca
Affiliation:
Instituto de Matemáticas, Universidad Nacional Autonoma de México, CP 58089, Morelia, Michoacán, México ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A Lehmer number is a composite positive integer n such that ϕ(n)|n − 1. In this paper, we show that given a positive integer g > 1 there are at most finitely many Lehmer numbers which are repunits in base g and they are all effectively computable. Our method is effective and we illustrate it by showing that there is no such Lehmer number when g ∈ [2, 1000].

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2010

References

1.Bang, A. S., Taltheoretiske Undersøgelser, Tidsskrift Math. 5 (1886), 7080, 130137.Google Scholar
2.Cohen, G. L. and Hagis, P., On the number of prime factors of n if ϕ(n)|n − 1, Nieuw Arch. Wisk. 28 (1980), 177185.Google Scholar
3.Guy, R. K., Unsolved problems in number theory (Springer, 2004).Google Scholar
4.Lehmer, D. H., On Euler's totient function, Bull. Am. Math. Soc. 38 (1932), 745751.Google Scholar
5.Luca, F., Fibonacci numbers with the Lehmer property, Bull. Polish Acad. Sci. Math. 55 (2007), 715.Google Scholar
6.Pomerance, C., On composite n for which ϕ(n)|n – 1, II, Pac. J. Math. 69 (1977), 177186.Google Scholar