Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T15:47:44.841Z Has data issue: false hasContentIssue false

Rational Conjugacy of Torsion Units in Integral Group Rings of Non-Solvable Groups

Published online by Cambridge University Press:  16 March 2017

Andreas Bächle
Affiliation:
Vakgroep Wiskunde, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium ([email protected])
Leo Margolis
Affiliation:
Fachbereich Mathematik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany ([email protected])

Abstract

We introduce a new method to study rational conjugacy of torsion units in integral group rings using integral and modular representation theory. Employing this new method, we verify the first Zassenhaus conjecture for the group PSL(2, 19). We also prove the Zassenhaus conjecture for PSL(2, 23). In a second application we show that there are no normalized units of order 6 in the integral group rings of M 10 and PGL(2, 9). This completes the proof of a theorem of Kimmerle and Konovalov that shows that the prime graph question has an affirmative answer for all groups having an order divisible by at most three different primes.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Allen, P. J. and Hobby, C., A characterization of units in Z[A 4], J. Alg. 66(2) (1980), 534543.CrossRefGoogle Scholar
2. Bovdi, V. and Konovalov, A., Integral group ring of the first Mathieu simple group, in Groups St Andrews 2005, Volume 1 (ed. Campbell, C. M., Quick, M. R., Robertson, E. F. and Smith, G. C.), London Mathematical Society Lecture Note Series, Volume 339, pp. 237245 (Cambridge University Press, 2007).CrossRefGoogle Scholar
3. Bovdi, V. and Konovalov, A., Integral group ring of the Mathieu simple group M 24 , J. Alg. Appl. 11(1) (2012), 1250016.CrossRefGoogle Scholar
4. Breuer, T., The GAP character table library, Version 1.2.1, GAP package (available at http://www.math.rwth-aachen.de/~˜Thomas.Breuer/ctbllib; 2012).Google Scholar
5. Caicedo, M., Margolis, L. and Del Río, Á., Zassenhaus conjecture for cyclic-by-abelian groups, J. Lond. Math. Soc. 88(1) (2013), 6578.CrossRefGoogle Scholar
6. Cohn, A. and Livingstone, D., On the structure of group algebras, I, Can. J. Math. 17 (1965), 583593.CrossRefGoogle Scholar
7. Curtis, C. W. and Reiner, I., Methods of representation theory: with applications to finite groups and orders, Volume I (John Wiley & Sons, 1981).Google Scholar
8. Dabbaghian, V., REPSN – a GAP4 package for constructing representations of finite groups, Version 3.0.2, GAP package (available at http://www.sfu.ca/~vdabbagh/gap/repsn.html; 2011).Google Scholar
9. Dieterich, E., Representation types of group rings over complete discrete valuation rings II, in Orders and their applications, Lecture Notes in Mathematics, Volume 1142, pp. 112125 (Springer, 1985).CrossRefGoogle Scholar
10. GAP Group, GAP – groups, algorithms, and programming, Version 4.7.5 (available at http://www.gap-system.org; 2014).Google Scholar
11. Gildea, J., Zassenhaus conjecture for integral group ring of simple linear groups, J. Alg. Appl. 12(6) (2013), 1350016.CrossRefGoogle Scholar
12. Gudivok, P. M., Representations of finite groups over number rings, Izv. Akad. Nauk SSSR Ser. Mat. 31(4) (1967), 799834 (in Russian).Google Scholar
13. Heller, A. and Reiner, I., Representations of cyclic groups in rings of integers, I, Annals Math. 76(1) (1962), 7392.CrossRefGoogle Scholar
14. Hertweck, M., On the torsion units of some integral group rings, Alg. Colloq. 13(2) (2006), 329348.CrossRefGoogle Scholar
15. Hertweck, M., Partial augmentations and Brauer character values of torsion units in group rings, Preprint (arXiv:math/0612429v2 [math.RA]; 2007).Google Scholar
16. Hertweck, M., Zassenhaus conjecture for A 6 , Proc. Indian Acad. Sci. Math. Sci. 118(2) (2008), 189195.CrossRefGoogle Scholar
17. Hughes, I. and Pearson, K. R., The group of units of the integral group ring ZS 3 , Can. Math. Bull. 15 (1972), 529534.CrossRefGoogle Scholar
18. Huppert, B., Endliche Gruppen I, Die Grundlehren der Mathematischen Wissenschaften, Volume 134 (Springer, 1967).CrossRefGoogle Scholar
19. Huppert, B. and Blackburn, N., Finite groups II, Die Grundlehren der Mathematischen Wissenschaften, Volume 242 (Springer, 1982).Google Scholar
20. Isaacs, I. M., Character theory of finite groups, Pure and Applied Mathematics, Number 69 (Academic Press, 1976).Google Scholar
21. Jespers, E., Marciniak, Z., Nebe, G. and Kimmerle, W., Mini-Workshop: Arithmetik von Gruppenringen, Oberwolfach Rep. 4(4) (2007), 32093239.CrossRefGoogle Scholar
22. Kimmerle, W., On the prime graph of the unit group of integral group rings of finite groups, in Groups, rings and algebras, Contemporary Mathematics, Volume 420, pp. 215228 (American Mathematical Society, Providence, RI, 2006).CrossRefGoogle Scholar
23. Kimmerle, W. and Konovalov, A., On the prime graph of the unit group of integral group rings, Preprint, Fachbereich Mathematik, Universität Stuttgart (available at http://www.mathematik.uni-stuttgart.de/preprints/downloads/2012/2012-018.pdf; 2012).Google Scholar
24. Kimmerle, W. and Konovalov, A., Recent advances on torsion subgroups of integral group rings, in Groups St Andrews 2013, London Mathematical Society Lecture Note Series, Volume 422, pp. 331347 (Cambridge University Press, 2015).CrossRefGoogle Scholar
25. Luthar, I. S. and Passi, I. B. S., Zassenhaus conjecture for A 5 , Proc. Indian Acad. Sci. Math. Sci. 99(1) (1989), 15.CrossRefGoogle Scholar
26. Luthar, I. S. and Trama, P., Zassenhaus conjecture for S 5 , Commun. Alg. 19(8) (1991), 23532362.CrossRefGoogle Scholar
27. Marciniak, Z., Ritter, J., Sehgal, S. K. and Weiss, A., Torsion units in integral group rings of some metabelian groups, II, J. Number Theory 25(3) (1987), 340352.CrossRefGoogle Scholar
28. Margolis, L., A Sylow theorem for the integral group ring of PSL(2, q), J. Alg. 445 (2016), 295306.CrossRefGoogle Scholar
29. Neukirch, J., Algebraic number theory, Grundlehren der Mathematischen Wissenschaften, Volume 322 (Springer, 1999).CrossRefGoogle Scholar
30. Parker, R. A., The computer calculation of modular characters (the meat-axe), in Computational group theory (Durham, 1982), pp. 267274 (Academic Press, 1984).Google Scholar
31. Sehgal, S. K., Units in integral group rings, Pitman Monographs and Surveys in Pure and Applied Mathematics, Volume 69 (Longman Scientific & Technical, Harlow, 1993).Google Scholar
32. Shahabi, M. A. Shojaei, Schur indices of irreducible characters of SL(2, q), Arch. Math. 40 (1983), 221231.CrossRefGoogle Scholar
33. Weiss, A., Torsion units in integral group rings, J. Reine Angew. Math. 415 (1991) 175187.Google Scholar
34. Wilson, R., Walsh, P., Tripp, J., Suleiman, I., Parker, R., Norton, S., Nickerson, S., Linton, S., Bray, J. and Abbott, R., Atlas of finite group representations, Version 3 (available at http://brauer.maths.qmul.ac.uk/Atlas/v3/; 2014).Google Scholar