Article contents
Primitive Rings of Infinite Matrices
Published online by Cambridge University Press: 20 January 2009
Extract
E. C. Posner (5) has shown that a ring R is primitive if and only if the corresponding matrix ring Mn(R) is primitive. From this result he is able to deduce that the primitive ideals in Mn(R) are precisely those ideals of the form Mn(P), where P is a primitive ideal in R. This affords an alternative proof that the Jacobson radical of Mn(R) is Mn(J), where J is the Jacobson radical of R. But Patterson (3, 4) has shown that this last result does not hold in general for rings of infinite matrices and thus that the above result concerning primitive ideals cannot be extended to the infinite case. Nevertheless in this paper we are able to show that Posner's result on primitive rings does extend to infinite matrix rings. Patterson's result depends on showing that if the Jacobson radical J of R is not right vanishing then a certain matrix with entries from J does not lie in the Jacobson radical of the infinite matrix ring. In the final section of this paper we consider a ring R with this property and exhibit a primitive ideal in the infinite matrix ring, which does not arise, as above, from a primitive ideal in R. Finally the Jacobson radical of this ring is determined.
- Type
- Research Article
- Information
- Copyright
- Copyright © Edinburgh Mathematical Society 1964
References
REFERENCE
- 6
- Cited by