Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T08:29:36.857Z Has data issue: false hasContentIssue false

Primitive inverse congruences on categorical semigroups

Published online by Cambridge University Press:  20 January 2009

John Fountain
Affiliation:
Department of Mathematics, University of York, Heslington, York YO1 5DD, UK
Gracinda M. S. Gomes
Affiliation:
Departamento de Matemática, Faculdade de Ciências, Universidade de Lisboa, 1749–016, Lisboa, Portugal and Centro de Álgebra da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649–003 Lisboa, Portugal
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give an abstract description of the kernel of a proper primitive inverse congruence on a categorical semigroup. More specifically, we show that it is a *-reflexive, *-unitary, *-dense subsemigroup, and that on a given categorical semigroup there is a one–one correspondence between such subsemigroups and the proper primitive inverse congruences. Our results allow us to give a description of the minimum proper primitive inverse semigroup congruence on a strongly E*-dense categorical semigroup.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2000

References

1. Birget, J.-C., Margolis, S. and Rhodes, J., Semigroups whose idempotents form a subsemigroup, Bull. Aust. Math. Soc. 41 (1990), 161184.CrossRefGoogle Scholar
2. Clifford, A. H. and Preston, G. B., The algebraic theory of semigroups, vol. II (American Mathematical Society, Providence, RI, 1967).Google Scholar
3. Dubreil, P., Contribution à la théorie des semigroupes, Mém. Acad. Sci. Inst. France 63 (1941), 52.Google Scholar
4. Edwards, P. M., On joins with group congruences, Proc. Edinb. Math. Soc. 40 (1997), 6367.CrossRefGoogle Scholar
5. Fountain, J., 〈E〉-dense monoids, in Monash conference on semigroup theory (ed. Hall, T. E., Jones, P. R. and Meakin, J. C.), pp. 6876 (World Scientific, Singapore, 1991).Google Scholar
6. Fountain, J. and Hayes, A. D., E*-dense semigroups whose idempotents form a subsemigroup, Preprint, University of York.Google Scholar
7. Fountain, J., Pin, J.-E. and Weil, P., Covers for monoids, Preprint, University of York.Google Scholar
8. Gomes, G. M. S., A characterisation of the group congruences on a semigroup, Semigroup Forum 46 (1993), 4853.CrossRefGoogle Scholar
9. Gomes, G. M. S. and Howie, J. M., A P-theorem for inverse semigroups with zero, Portugaliae Math. 53 (1996), 257278.Google Scholar
10. Gomes, G. M. S. and Howie, J. M., Semigroups with zero whose idempotents form a subsemigroup, Proc. R. Soc. Edinb. A 128 (1998), 265281.CrossRefGoogle Scholar
11. Hall, T. E. and Munn, W. D., The hypercore of a semigroup, Proc. Edinb. Math. Soc. 28 (1985), 107112.CrossRefGoogle Scholar
12. Howie, J. M., Fundamentals of semigroup theory (Oxford University Press, 1995).CrossRefGoogle Scholar
13. Jones, P. R., Joins and meets of congruences on a regular semigroup, Semigroup Forum 30 (1984), 116.CrossRefGoogle Scholar
14. Lallement, G. and Petrich, M., Some results concerning completely 0-simple semigroups, Bull. Am. Math. Soc. 70 (1964), 777778.CrossRefGoogle Scholar
15. Levi, F. W., On semigroups, Bull. Calcutta Math. Soc. 36 (1944), 141146.Google Scholar
16. Levi, F. W., On semigroups, II, Bull. Calcutta Math. Soc. 38 (1946), 123124.Google Scholar
17. McAlister, D. B., Matrix representations of semigroups, Glasgow Math. J. 8 (1967), 113.CrossRefGoogle Scholar
18. Mitsch, H., Subdirect products of E-inversive semigroups, J. Aust. Math. Soc. 48 (1990), 6678.CrossRefGoogle Scholar
19. Munn, W. D., Brandt congruences on inverse semigroups, Proc. Lond. Math. Soc. (3) 14 (1964), 154164.CrossRefGoogle Scholar
20. Petrich, M.. Inverse semigroups (Wiley, New York, 1984).Google Scholar
21. Preston, G. B., Congruences on Brandt semigroups, Math. Ann. 139 (1959), 9194.CrossRefGoogle Scholar
22. Preston, G. B., Matrix representations of inverse semigroups, J. Aust. Math. Soc. 9 (1969), 2961.CrossRefGoogle Scholar