Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T23:14:11.608Z Has data issue: false hasContentIssue false

Prime amphicheiral knots with free period 2

Published online by Cambridge University Press:  30 August 2019

Luisa Paoluzzi
Affiliation:
Aix-Marseille Univ, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France ([email protected])
Makoto Sakuma
Affiliation:
Department of Mathematics, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan ([email protected])

Abstract

We construct prime amphicheiral knots that have free period 2. This settles an open question raised by the second-named author, who proved that amphicheiral hyperbolic knots cannot admit free periods and that prime amphicheiral knots cannot admit free periods of order > 2.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Boileau, M. and Flapan, E., Uniqueness of free action on S 3 respecting a knot, Canad. J. Math. 39 (1987), 969982.10.4153/CJM-1987-049-3CrossRefGoogle Scholar
2.Boileau, M. and Porti, J., Geometrization of 3-orbifolds of cyclic type, Astérisque Monograph 272 (2001).Google Scholar
3.Boileau, M. and Zimmermann, B., Symmetries of nonelliptic Montesinos links, Math. Ann. 277 (1987), 563584.CrossRefGoogle Scholar
4.Bonahon, F. and Siebenmann, L., The characteristic toric splitting of irreducible compact 3-orbifolds, Math. Ann. 278 (1987), 441479.10.1007/BF01458079CrossRefGoogle Scholar
5.Bonahon, F. and Siebenmann, L., New geometric splittings of classical knots, and the classification and symmetries of arborescent knots. Draft of a monograph, available at http://www-bcf.usc.edu/~fbonahon/Research/Preprints/Preprints.html.Google Scholar
6.Burde, G. and Murasugi, K., Links and Seifert fiber spaces, Duke J. Math. 37 (1970), 8993.10.1215/S0012-7094-70-03713-0CrossRefGoogle Scholar
7.Cooper, D., Hodgson, C. and Kerckhoff, S., Three-dimensional orbifolds and cone-manifolds, MSJ Memoirs 5 (2000).Google Scholar
8.Culler, M., Dunfield, N. and Goerner, M., SnapPy. Computer software available at https://www.math.uic.edu/t3m/SnapPy/.Google Scholar
9.Dinkelbach, J. and Leeb, B., Equivariant Ricci flow with surgery and applications to finite group actions on geometric 3-manifolds, Geom. Topol. 13 (2009), 11291173.10.2140/gt.2009.13.1129CrossRefGoogle Scholar
10.Dunbar, W., Geometric orbifolds, Rev. Mat. Univ. Complut. Madrid 1 (1988), 6799.Google Scholar
11.Futer, D. and Guéritaud, F., Angled decompositions of arborescent link complements, Proc. Lond. Math. Soc. (3) 98 (2009), 325364.10.1112/plms/pdn033CrossRefGoogle Scholar
12.Hoffman, N., Ichihara, K., Kashiwagi, M., Masai, H., Oishi, S. and Takayasu, A., Verified computations for hyperbolic 3-manifolds, Exp. Math. 25 (2016), 6678.10.1080/10586458.2015.1029599CrossRefGoogle Scholar
13.Jaco, W., Lectures on three-manifold topology. CBMS Regional Conference Series in Mathematics,Volume 43 (Memoirs of the American Mathematical Society, Providence, RI, 1980).10.1090/cbms/043CrossRefGoogle Scholar
14.Jaco, W. and Shalen, P., Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc 21 (220)(1979).Google Scholar
15.Kawauchi, A., A survey of knot theory (Birkhäuser, 1996).Google Scholar
16.Kwun, K. W., Scarcity of orientation-reversing PL involutions of lens spaces, Michigan Math. J. 17 (1970), 355358.Google Scholar
17.Lee, D. and Sakuma, M., Epimorphisms between 2-bridge link groups: homotopically trivial simple loops on 2-bridge spheres, Proc. Lond. Math. Soc. 104 (2012), 359386.10.1112/plms/pdr036CrossRefGoogle Scholar
18.Meeks, W. and Yau, S. T., The equivariant Dehn's lemma and loop theorem, Comment. Math. Helv. 56 (1981), 225239.10.1007/BF02566211CrossRefGoogle Scholar
19.Menasco, W., Closed incompressible surfaces in alternating knot and link complements, Topology 23 (1984), 3744.10.1016/0040-9383(84)90023-5CrossRefGoogle Scholar
20.Morgan, J. and Bass, H., The Smith conjecture. Papers presented at the symposium held at Columbia University, New York, 1979, Pure and Applied Mathematics,Volume 112 (Academic Press, 1984).Google Scholar
21.Myers, R., Excellent 1-manifolds in compact 3-manifolds, Topology Appl. 49 (1993), 115127.10.1016/0166-8641(93)90038-FCrossRefGoogle Scholar
22.Riley, R., Seven excellent knots. Low-dimensional topology (Bangor, 1979), London Mathematical Society Lecture Note Series,Volume 48 (Cambridge University Press, 1982), pp. 81151.Google Scholar
23.Sakuma, M., Periods of composite links, Math. Sem. Notes Kobe Univ. 9 (1981), 225242.Google Scholar
24.Sakuma, M., Uniqueness of symmetries of knots, Math. Z. 192 (1986), 225242.CrossRefGoogle Scholar
25.Sakuma, M., Non-free-periodicity of amphicheiral hyperbolic knots, homotopy theory and related topics, Adv. Stud. Pure Math. 9 (1987), 189194.10.2969/aspm/00910189CrossRefGoogle Scholar
26.Sakuma, M., The geometries of spherical Montesinos links, Kobe J. Math. 7 (1990), 167190.Google Scholar
27.Scott, P., The geometries of 3-manifolds, Bull. Lond. Math. Soc. 15 (1983), 401487.CrossRefGoogle Scholar
28.Weeks, J., SnapPea. Computer software available at http://www.geometrygames.org/SnapPea/.Google Scholar