No CrossRef data available.
Published online by Cambridge University Press: 27 May 2004
It is well known that $\varOmega^2S^{2n+1}$ is approximated by $\textrm{Rat}_{k}(\mathbb{C}P^{n})$, the space of based holomorphic maps of degree $k$ from $S^2$ to $\mathbb{C}P^{n}$. In this paper we construct a space $G_{k}^{n}$ which is an analogue of $\textrm{Rat}_{k}(\mathbb{C}P^{n})$, and prove that under the natural map $j_k:G_{k}^{n}\to\varOmega^2S^{2n}$, $G_{k}^{n}$ approximates $\varOmega^2S^{2n}$.
AMS 2000 Mathematics subject classification: Primary 55P35