Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T23:27:17.336Z Has data issue: false hasContentIssue false

On the zeros of second order linear differential polynomials

Published online by Cambridge University Press:  20 January 2009

J. K. Langley
Affiliation:
Department of Mathematics, University College London, London WC1E 6BT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We determine all functions f(z) meromorphic in the plane such that f′(z)/f(z) has finite order and f(z) and F(z) have only finitely many zeros, where F(z) = f″(z) + Af(z) for some constant A.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1990

References

REFERENCES

1.Bieberbach, L., Theorie de gewöhnlichen Differentialgleichungen, 2nd ed. (Springer Verlag, Berlin, 1965).CrossRefGoogle Scholar
2.Frank, G. and Hellerstein, S., On the meromorphic solutions of nonhomogeneous linear differential equations with polynomial coefficients, Proc. London Math, Soc. (3) 53 (1986), 407428.CrossRefGoogle Scholar
3.Frank, G., Hennekemper, W. and Polloczek, G., Uber die Nullstellen meromorpher Funktio-nen und ihrer Ableitungen, Math. Ann. 225 (1977), 145154.CrossRefGoogle Scholar
4.Fuchs, W. H. J., Topics in the Theory of Functions of One Complex Variable (Van Nostrand Math. Studies, 12, 1967).Google Scholar
5.Gundersen, G., Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2) 37 (1988), 88104.CrossRefGoogle Scholar
6.Hayman, W. K., Meromorphic Functions (Clarendon Press, Oxford, 1964).Google Scholar
7.Hellerstein, S. and Rossi, J., Zeros of meromorphic solutions of second order linear differential equations, Math. Z. 192 (1986), 603612.CrossRefGoogle Scholar
8.Hille, E., Lectures on Ordinary Differential Equations (Addison-Wesley, Reading, Mass., 1969).Google Scholar
9.Hille, E., Ordinary Differential Equations in the Complex Domain (Wiley, New York, 1976).Google Scholar
10.Ince, E. L., Ordinary Differential Equations (Dover, N.Y., 1956).Google Scholar
11.Lanoley, J. K., On the zeros of linear differential polynomials with small rational coefficients, J. London Math. Soc. (2) 36 (1987), 445457.CrossRefGoogle Scholar
12.Langley, J. K., On the zeros of (f″ + αf)f and a result of Steinmetz, Proc. Roy. Soc. Edinburgh 108A (1988), 241247.CrossRefGoogle Scholar
13.Langley, J. K., The Tsuji characteristic and zeros of linear differential polynomials, Analysis, to appear.Google Scholar
14.Mues, E., Uber ein Vermutung von Hayman, Math. Z. 119 (1972), 1120.CrossRefGoogle Scholar
15.Steinmetz, N., On the zeros of (f(p) + ap–1f(p–1) + … +a0f)f, Analysis 7 (1987), 375389.CrossRefGoogle Scholar
16.Valiron, G., Lectures on the General Theory of Integral Functions (Edouard Privat, Toulouse, 1923).Google Scholar