Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T17:28:45.890Z Has data issue: false hasContentIssue false

On the projective tensor product of Fréchet spaces

Published online by Cambridge University Press:  20 January 2009

Juan C. Díaz
Affiliation:
Cátedra de MatemáticasE.T.S.I. AgrónomosUniversidad de Córdoba14004 Córdoba, Spain
Juan A. López Molina
Affiliation:
Ampliación de MatemáticasE.T.S.I. AgrónomosUniversidad Pol. de Valencia46071 Valencia, Spain
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We are concerned with the following problem. Let F be a Fréchet Montel space and let E be a Fréchet space with a certain property (P). When does it follow that the complete projective tensor product has the property (P)? (We consider the following properties: being Montel, reflexive, satisfying the density condition.) In this paper we provide a positive answer if F is a Montel generalized Dubinsky sequence space with decreasing steps.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1991

References

REFERENCES

1.Bierstedt, K. D. and Bonet, J., Stefan Heinrich's density condition for Fréchet spaces and the characterization of the distinguished echelon spaces, Math. Nachr. 135 (1988), 149180.CrossRefGoogle Scholar
2.Bierstedt, K. D. and Bonet, J., Density Conditions in Fréchet and (DF)-spaces (Functional Analysis Congress at El Escorial, 1988).CrossRefGoogle Scholar
3.Bonet, J. and Defant, A., Projective tensor products of distinguished Fréchet spaces, Proc. Roy. Irish Acad., Sect. A 85 (1985), 193199.Google Scholar
4.Bonet, J. and Galbis, A., A note on Taskinen's counterexamples on the problem of topologies of Grothendieck, Proc. Edinburgh Math. Soc. 32 (1989), 281283.CrossRefGoogle Scholar
5.Bonet, J. and Dierolf, S., Fréchet Spaces of Moscatelli Type (Functional Analysis Congress at EI Escorial, 1988).Google Scholar
6.Diaz, J. C., An example of Fréchet space, not Montel, without infinite dimensional normable subspaces, Proc. Amer. Math. Soc. 96 (1986), 721.Google Scholar
7.Diaz, J. C., Montel subspaces in countable projective limits of Lp(µ)-spaces, Canad. Math. Bull. 32 (1989), 169176.CrossRefGoogle Scholar
8.Dierolf, S., On spaces of continuous linear mappings between locally convex spaces, Note Mat. 5 (1985), 147255.Google Scholar
9.Dubinsky, E., Perfect Fréchet spaces, Math. Ann. 174 (1967), 186194.CrossRefGoogle Scholar
10.Gelbaum, B. R., Gil De Lamadrid, J., Bases of tensor products of Banach spaces, Pacific J. Math. 11 (1961), 12811286.CrossRefGoogle Scholar
11.Heinrich, S., Weak sequential completeness of Banach operator ideals, Siberian Math. J. 17 (1976), 857862.Google Scholar
12.Hollstein, R., Extension and lifting of continuous linear mappings in locally convex spaces, Math. Nachr. 108 (1982), 275297.CrossRefGoogle Scholar
13.Holub, J. R., Tensor product bases and tensor diagonals, Trans. Amer. Math. Soc. 151 (1970), 563'579.CrossRefGoogle Scholar
14.Jarchow, H., Locally Convex Spaces (Teubner, Stuttgart, 1981).CrossRefGoogle Scholar
15.Kothe, G., Topological Vector Spaces I, II (Springer-Verlag, Berlin-Heidelberg-New York, 1969, 1979).Google Scholar
16.Lindenstrauss, J. and Tzafiri, L., Classical Banach Spaces, I (Springer-Verlag, Berlin, 1977).CrossRefGoogle Scholar
17.López-Molina, J. A., Reflexivity of projective tensor products of echelon and coechelon Kothe spaces, Collect. Math. 33 (1982), 259284.Google Scholar
18.López-Molina, J. A., El producto tensorial (p-r-s) proyectivo de espacios perfectos de Fréchet-Montel, Rev. Real Acad. Cience. Madrid 79 (1985), 153169.Google Scholar
19.Carreras, P. Perez and Bonet, J., Barrelled Locally Convex Spaces (North-Holland, Amsterdam, 1987).Google Scholar
20.Pietsch, A., Operator Ideals (North-Holland, Amsterdam, 1980).Google Scholar
21.Ryan, R., The Dunford-Pettis property and projective tensor products, Bull. Acad. Polon. Sci. 27 (1979), 373379.Google Scholar
22.Taskinen, J., Counterexamples to “problème des topologies” of Grothendieck, Ann. Acad. Sci. Fenn. Ser. A, 63 (1986).Google Scholar
23.Taskinen, J., The projective tensor product of Fréchet Montel spaces, Studio Math. 91 (1988), 1730.CrossRefGoogle Scholar
24.Tazskinen, J., (FBa)- and (FBB)-spaces, Math. Z. 198 (1988), 339365.CrossRefGoogle Scholar
25.Taskinen, J., Examples of non-distinguished Frechet spaces, Ann. Acad. Sci. Fenn., to appears.Google Scholar
26.Weill, L. J., Unconditional and shrinking bases in locally convex spaces, Pacific J. Math. 29 (1969), 467483.CrossRefGoogle Scholar