Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-22T20:50:25.207Z Has data issue: false hasContentIssue false

On the prime factors of the iterates of the Ramanujan τ–function

Published online by Cambridge University Press:  11 November 2020

Florian Luca
Affiliation:
School of Mathematics, University of the Witwatersrand, Private Bag X3, Wits 2050, Johannesburg, South Africa Max Planck Institute for Software Systems, Saarbrücken, Germany Research Group in Algebraic Structures and Applications, King Abdulaziz University, Jeddah, Saudi Arabia Centro de Ciencias Matemáticas, UNAM, Morelia, Mexico ([email protected])
Sibusiso Mabaso
Affiliation:
Mangosuthu University of Technology, 511 Griffiths Mxenge Hwy, Umlazi, Durban4301, South Africa ([email protected])
Pantelimon Stănică
Affiliation:
Applied Mathematics Department, Naval Postgraduate School, Monterey, CA93943–5216, USA ([email protected])

Abstract

In this paper, for a positive integer n ≥ 1, we look at the size and prime factors of the iterates of the Ramanujan τ function applied to n.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashworth, M. H., Congruence and identical properties of modular forms, D. Phil. Thesis, Oxford, 1968.Google Scholar
Balakrishnan, J. S., Craig, W. and Ono, K., Variations of Lehmer's conjecture for Ramanujan's tau-function, available at , https://arxiv.org/pdf/2005.10345.pdf.Google Scholar
Balakrishnan, J. S., Craig, W., Ono, K. and Tsai, W.-L., Variants of Lehmer's speculation for newforms, available at , https://arxiv.org/pdf/2005.10354.pdfGoogle Scholar
Barros, C. F., On the Lebesgue-Nagell equation and related subjects. PhD thesis, The University of Warwick, 2010.Google Scholar
Bérczes, A., Evertse, J.-H. and Györy, K., Effective results for hyper- and super elliptic equations over number fields, Publ. Math. Debrecen 82 (2013), 727756.CrossRefGoogle Scholar
Bilu, Yu. and Luca, F., Trinomials with given roots, Indag. Math. (N.S.) 31 (2020), 3342.CrossRefGoogle Scholar
Bilu, Yu., Hanrot, G. and Voutier, P. M., Existence of primitive divisors of Lucas and Lehmer numbers. With an appendix by M. Mignotte, J. Reine Angew. Math. 539 (2001), 75122.Google Scholar
Evertse, J.-H., The number of solutions of the Thue-Mahler equation, J. Reine Angew. Math. 482 (1997), 121149.Google Scholar
Evertse, J.-H. and Silverman, J. H., Uniform bounds for the number of solutions to Y n = f(X), Math. Proc. Camb. Phil. Soc. 100 (1986), 237248.CrossRefGoogle Scholar
Granville, A., ABC allows us to count squarefrees, Internat. Math. Res. Notes 19 (1998), 9911008.CrossRefGoogle Scholar
Güloğlu, A., Luca, F. and Yalçiner, A., Arithmetic properties of coefficients of L-functions of elliptic curves, Monatsh. Math. 187 (2018), 247273.CrossRefGoogle Scholar
Lahiri, D. B., On Ramanujan's function τ(n) and the divisor function σk(n) − I, Bull. Calcutta Math. Soc. 38 (1946), 193206.Google Scholar
Lehmer, D. H., The vanishing of Ramanujan's function τ(n), Duke Math. J. 14 (1947), 429433.CrossRefGoogle Scholar
Luca, F. and Mabaso, S., Diophantine equations with the Ramanujan τ-function of factorials, Fibonacci numbers, and Catalan numbers, Fibonacci Quart. 57 (2019), 255259.Google Scholar
Mihăilescu, P., Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math. 572 (2004), 167195.Google Scholar
Moryia, B. K. and Smyth, C., Index-dependent divisors of coefficients of modular forms, Internat. J. Number Theory 9 (2013), 18411853.CrossRefGoogle Scholar
Murty, M. R., Murty, V. K. and Shorey, T. N., Odd values of the Ramanujan τ-function, Bull. Soc. Math. France 115 (1987), 391395.CrossRefGoogle Scholar
Rosser, J. B. and Schoenfeld, L., Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 6494.CrossRefGoogle Scholar
Stewart, C. L., On prime factors of terms of linear recurrence sequences, in Number theory and related fields: in memory of Alf van der Poorten (eds J. M. Borwein et al. ), Proceedings in Mathematics and Statistics, Volume 43, pp. 341–359. (Springer, 2013).CrossRefGoogle Scholar
Voutier, P., Primitive divisors of Lucas and Lehmer sequences, III, Math. Proc. Cambridge Philos. Soc. 123 (1998), 407419.CrossRefGoogle Scholar