Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T16:38:26.649Z Has data issue: false hasContentIssue false

On the moduli of continuity of Hp functions with 0<p<1

Published online by Cambridge University Press:  20 January 2009

Miroslav Pavlović
Affiliation:
Matematički FakultetStudentski Trg 1611000 Beograd, Yugoslavia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove two inequalities which relate the Lp modulus of continuity of n-th order, ωn(f,·)p, of an Hp function f with the p-th mean values of the n-th derivative f(n). Using these inequalities we extend classical results of Hardy and Littlewood [5], Gwiliam [4], Zygmund [13] and Taibleson [12] as well as a recent result of Oswald [6].

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1992

References

REFERENCES

1.Duren, P. L., Theory of Hp spaces (Academic Press, New York, 1970).Google Scholar
2.Flett, T. M., Mean values of power series, Pacific J. Math. 25 (1968), 463494.CrossRefGoogle Scholar
3.Flett, T. M., Lipschitz spaces of functions on the circle and the disc, J. Math. Anal. Appl. 39 (1972), 125168.CrossRefGoogle Scholar
4.Gwiliam, A. E., On Lipschitz conditions, Proc. London Math. Soc. 40 (1935), 353364.Google Scholar
5.Hardy, G. H. and Littlewood, J. E., Some properties of fractional integrals, II, Math. Z. 34 (1931), 403439.CrossRefGoogle Scholar
6.Oswald, P., On Besov-Hardy-Sobolev spaces of analytic functions in the unit disc, Czechslovak Math. J. 33 (108) (1983), 408427.CrossRefGoogle Scholar
7.Pavlović, M., Mixed norm spaces of analytic and harmonic function, I, II, Publ. Inst. Math. (Belgrade), 40 (54) (1986) 117141; 41 (55) (1987), 97–110.Google Scholar
8.Pavlović, M., Lipschitz spaces and spaces of harmonic functions in the unit disc, Michigan Math. J. 35 (1988), 301311.CrossRefGoogle Scholar
9.Shields, A. L. and Williams, D. L., Bounded projections, duality and multipliers in spaces of harmonic functions, J. Reine Angew. Math. 299/300 (1978), 265279.Google Scholar
10.Shields, A. L. and Williams, D. L., Bounded projections and the mean growth of harmonic conjugates in the unit disc, Michigan Math. J. 29 (1982), 325.CrossRefGoogle Scholar
11.Storoženko, E. A., On a problem of Hardy and Littlewood, Mat. Sbornik 119 (161) (1982), 564583 (Russian).Google Scholar
12.Taibleson, M. H., On the theory of Lipschitz spaces of distributions on Euclidean n-space I, II, J. Math. Mech. 13 (1964), 407479; 14 (1965), 821–839.Google Scholar
13.Zygmund, A., Smooth functions, Duke Math. J. 12 (1945), 4776.CrossRefGoogle Scholar