Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T09:37:08.387Z Has data issue: false hasContentIssue false

On the Goldie dimension of injective modules*

Published online by Cambridge University Press:  20 January 2009

José L. Gómez Pardo
Affiliation:
Departamento de Alxebra, Universidade de Santiago, 15771 Santiago de Compostela, Spain E-mail address: [email protected]
Pedro A. Guil Asensio
Affiliation:
Departamento de Matematicas, Universidad de Murcia, 30100 Espinardo, Murcia, Spain E-mail address: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let M be an essentially finitely generated injective (or, more generally, quasi-continuous) module. It is shown that if M satisfies a mild uniqueness condition on essential closures of certain submodules, then the existence of an infinite independent set of submodules of M implies the existence of a larger independent set on some quotient of M modulo a directed union of direct summands. This provides new characterisations of injective (or quasi-continuous) modules of finite Goldie dimension. These results are then applied to the study of indecomposable decompositions of quasi-continuous modules and nonsingular CS modules.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1998

References

REFERENCES

1.Clark, J. and Dung, Nguyen V., On the decomposition of nonsingular CS modules, Canadian Math. Bull., to appear.Google Scholar
2.Dauns, J. and Fuchs, L., Infinite Goldie dimensions, J. Algebra 115 (1988), 297302.CrossRefGoogle Scholar
3.Dung, Nguyen V. and Smith, P. F., Hereditary CS-modules, Math. Scand. 71 (1992), 173180.CrossRefGoogle Scholar
4.Dung, Nguyen V., Huynh, Dinh V., Smith, P. F. and Wisbauer, R., Extending modules (Longman, Harlow, 1994).Google Scholar
5.Erdös, P. and Tarski, A., On families of mutually exclusive sets, Ann. of Math. 44 (1943), 315329.CrossRefGoogle Scholar
6.Goldie, A. W., Semi-prime rings with maximum condition, Proc. London Math. Soc. 10 (1960), 201220.CrossRefGoogle Scholar
7.Gómez Pardo, J. L. and Guil Asensio, P. A., Essential embedding of cyclic modules in projectives, Trans. Amer. Math. Soc., to appear.Google Scholar
8.Gómez Pardo, J. L. and Guil Asensio, P. A., Rings with finite essential socle, Proc. Amer. Math. Soc., 125 (1997), 971977.CrossRefGoogle Scholar
9.Hrbacek, K. and Jech, T., Introduction to set theory (Marcel Dekker, New York, 1978).Google Scholar
10.Mohamed, S. H. and Müller, B. J., Continuous and discrete modules (Cambridge University Press, Cambridge, 1990).CrossRefGoogle Scholar
11.Osofsky, B. L., A generalization of Quasi-Frobenius rings, J. Algebra 4 (1966), 373387.CrossRefGoogle Scholar
12.Osofsky, B. L., Non-quasi-continuous quotients of finitely generated quasi-continuous modules, in Ring Theory (Jain, S. K. and Rizvi, S. T., Eds., World Scientific, Singapore, 1993), 259275.Google Scholar
13.Smith, P. F., Modules for which every submodule has a unique closure, in Ring Theory (Jain, S. K. and Rizvi, S. T., Eds., World Scientific, Singapore, 1993), 302313.Google Scholar
14.Stenström, B., Rings of Quotients (Springer-Verlag, Berlin and New York, 1975).CrossRefGoogle Scholar
15.Tarski, A., Sur la décomposition des ensembles en sous-ensembles presque disjoints, Fund. Math. 12 (1928), 188205.CrossRefGoogle Scholar
16.Wisbauer, R., Foundations of Module and Ring Theory (Gordon and Breach, Reading, 1991).Google Scholar