Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T18:47:00.924Z Has data issue: false hasContentIssue false

On the gaps between values of binary quadratic forms

Published online by Cambridge University Press:  01 November 2010

Jörg Brüdern
Affiliation:
Institut für Algebra und Zahlentheorie, Universität Stuttgart, 70511 Stuttgart, Germany Present address: Mathematisches Institut, Georg-August Universität Göttingen, Bunsenstrasse 3–5, 37073 Göttingen, Germany ([email protected]).
Rainer Dietmann
Affiliation:
Institut für Algebra und Zahlentheorie, Universität Stuttgart, 70511 Stuttgart, Germany Present address: Department of Mathematics, Royal Holloway University of London, Egham TW20 0EX, UK ([email protected]).
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Among the values of a binary quadratic form, there are many twins of fixed distance. This is shown in quantitative form. For quadratic forms of discriminant −4 or 8 a corresponding result is obtained for triplets.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2010

References

1.Bernays, P., Über die Darstellung von positiven, ganzen Zahlen durch die primitiven binären quadratischen Formen einer nichtquadratischen Diskriminante, Dissertation, Universität Göttingen (1912).Google Scholar
2.Dickson, L. E., Studies in the theory of numbers (Chicago University Press, 1930).Google Scholar
3.Dietmann, R., Small solutions of quadratic Diophantine equations, Proc. Lond. Math. Soc. 86 (2003), 545582.CrossRefGoogle Scholar
4.Gauss, C. F., Disquisitiones arithmeticae (Leipzig, 1801).Google Scholar
5.Goldston, D. A., Graham, S. W., Pintz, J. and Yildirim, C. Y., Small gaps between products of two primes, Proc. Lond. Math. Soc. (3) 98 (2009), 741774.CrossRefGoogle Scholar
6.Goldston, D. A., Pintz, J. and Yildirim, C. Y., Primes in tuples, I, Annals Math. (2) 170 (2009), 819862.CrossRefGoogle Scholar
7.Hablizel, M., Beschränkte Lücken zwischen Werten von Normformen, Dissertation, Universität Stuttgart (2008).Google Scholar
8.Hooley, C., On the intervals between numbers that are sums of two squares, II, J. Number Theory 5 (1973), 215217.CrossRefGoogle Scholar
9.Lefton, P., On the Galois groups of cubics and trinomials, Acta Arith. 35 (1979), 239246.CrossRefGoogle Scholar
10.Thorne, F., Bounded gaps between products of primes with applications to ideal class groups and elliptic curves, Int. Math. Res. Not. 2008(5) (2008), rnm156.CrossRefGoogle Scholar