Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T09:36:58.190Z Has data issue: false hasContentIssue false

On the difference of two fourth powers

Published online by Cambridge University Press:  10 November 2023

Nguyen Xuan Tho*
Affiliation:
Hanoi University of Science and Technology Hanoi, Vietnam ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

We investigate the equation $D=x^4-y^4$ in field extensions. As an application, for a prime number p, we find solutions to $p=x^4-y^4$ if $p\equiv 11$ (mod 16) and $p^3=x^4-y^4$ if $p\equiv 3$ (mod 16) in all cubic extensions of $\mathbb{Q}(i)$.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

1. Introduction

We are interested in the following problem.

Problem 1.

Let k be a perfect field of characteristic not equal to 2. Let K be a finite extension of k. Let $D\in k^*$. Find all solutions to the equation

(1)\begin{equation}D=x^4-y^4.\\\end{equation}

By a solution (x, y) to Equation (1), we always mean $(x,y)\in \mathbb{A}^2(K)$ satisfying Equation (1) and xy ≠ 0.

When $k=K=\mathbb{Q}$, using a variety of methods, many authors have shown that Equation (1) has no solutions if $D=nz^p$ for integers n and prime numbers p; see [Reference Bajolet, Dupuy, Luca and Togbe1, Reference Bennett2, Reference Cao4, Reference Dabrowski6, Reference Darmon7, Reference Savin11].

It is natural to ask for solutions of Equation (1) when k and K are not the rational field. When k and K are number fields, since Equation (1) defines a curve of genus 3, by Faltings’ theorem [Reference Faltings8], Equation (1) only has a finite number of solutions, but to find all solutions to Equation (1) is in general a difficult task. We adopt here the method of Cassels’ [Reference Cassels5] and Bremner’s [Reference Bremner3], which is effective in finding solutions to Equation (1) in all cubic extensions of the base field in many situations. It is also worth mentioning that the work of Silverman [Reference Silverman13] on the equation $x^4+y^4=D$ (and $x^6+y^6=D$) over number fields. But Silverman’s method does not apply when finding solutions in cubic extensions of the base field. The main result of this paper is as follows:

Theorem 1. Let k be a perfect field of characteristic not equal to 2. Let $D\in k$ such that $D\not\in \pm k^2$. Assume that

  1. (i) every solution $(X,y,z)\in \mathbb{A}^3(k)$ to $X^2-y^4=Dz^4$ satisfies z = 0,

  2. (ii) every solution $(x,Y,z)\in \mathbb{A}^3(k)$ to $x^4-Y^2=Dz^4$ satisfies z = 0.

If (x, y) is a solution to $D=x^4-y^4$ in a cubic extension K of k, then

  1. (1) (if $-1\not \in k^2$)

    \begin{equation*}K=k(\theta),\quad x=\pm \left(\dfrac{D}{s\theta}-\dfrac{s}{4}\right),\quad y= \pm \left(\dfrac{D}{s\theta}+\dfrac{s}{4}\right), \end{equation*}
    where $\theta^3-s^2\theta^2/8-2D^2/s^2=0$ and $s\in k^{*}$, and
  2. (2) (if $-1\in k^2$)

    \begin{equation*}K=k(\theta),\quad x=\pm \left(\dfrac{\theta}{s}-\dfrac{s}{4}\right),\quad y=\pm i\left(\dfrac{\theta}{s}+\dfrac{s}{4}\right), \end{equation*}
    where $i=\sqrt{-1}$, $\theta^3+s^4\theta/16+Ds^2/2=0$, and $s\in k^{*}$.

A nice corollary of Theorem 1 is

Corollary 1. Let p be a prime number. Let D = p if $p\equiv 11$ (mod 16), and let $D=p^3$ if $p\equiv 3$ (mod 16). Then solutions to $D=x^4-y^4$ in all cubic extensions of $\mathbb{Q}(i)$ are

  1. (1)

    \begin{equation*}x=\pm \left(\dfrac{D}{s\theta}-\dfrac{s}{4}\right),\qquad y= \pm \left(\dfrac{D}{s\theta}+\dfrac{s}{4}\right),\end{equation*}

    where $\theta^3-s^2\theta^2/8-2D^2/s^2=0$ for some $s\in \mathbb{Q}(i)^{*}$; and

  2. (2)

    \begin{equation*} x=\pm \left(\dfrac{\theta}{s}-\dfrac{s}{4}\right),\qquad y=\pm i\left(\dfrac{\theta}{s}+\dfrac{s}{4}\right), \end{equation*}

    where $\theta^3+s^4\theta/16+Ds^2/2=0$ for some $s\in \mathbb{Q}(i)^{*}$.

Remark 1. Theorem 1 finds all possible cubic extensions K of k and solutions to $D=x^4-y^4$ in K. The defining polynomial of K, $F_s(x)=x^3-s^2x^2/8-2D^2/s^2$ or $F_s(x)=x^3+s^4x/16+Ds^2/2$, must be irreducible in $k[x]$, which in general is difficult to check since the irreducibility of $F_s(x)$ depends on s. However, if k is a number field, by Hilbert’s irreducibility theorem [Reference Serre12, Theorem 3.4.1], there exist infinitely many $s\in k$ such that $F_s(x)$ is irreducible in $k[x]$ and Theorem 1 finds all solutions to $D=x^4-y^4$ in these cases.

2. Proof of Theorem 1

We follow Cassels [Reference Cassels5]. Equation (1) can be written in the homogeneous form

(2)\begin{equation} x^4-y^4=Dz^4. \end{equation}

Let $\mathcal{C}$ be the projective curve over k defined by Equation (2). Suppose that $P=[x_1:y_1:z_1]$is a point on (2) whose coordinates generate a cubic extension K of k. If $z_1=0$, then $[x_1:y_1:z_1]=[\pm 1:1:0]$; therefore K = k, which is impossible. Therefore, $z_1\neq 0$. Since $(x_1/z_1)^4-(y_1/z_1)^4=D$ and $|K:k|=3$, we have $x_1/z_1,y_1/z_1\not\in k$. Thus,

(3)\begin{equation} k\left(\dfrac{x_1}{z_1}\right)=k\left(\dfrac{y_1}{z_1}\right)= k\left(\dfrac{x_1^2}{z_1^2}\right)=k\left(\dfrac{y_1^2}{z_1^2}\right)=K. \end{equation}

Fix an algebraic closure $\overline{k}$ of k. Let $P_i=[x_i:y_i:z_i] \in \mathbb{P}^{2}(\overline{k})$, $i=1,2,3$, be the Galois conjugates of P. The equation

(4)\begin{equation} X^2-Y^2=DZ^2 \end{equation}

has a parametrization

\begin{equation*}[X:Y:Z]=[l^2+Dm^2:l^2-Dm^2:2lm].\end{equation*}

Since $[x_1^2:y_1^2:z_1^2]$ satisfies Equation (4), there exist $\lambda,\mu\in k$ such that

(5)\begin{equation}{ [x_1^2:y_1^2:z_1^2]=[\lambda^2+D\mu^2:\lambda^2-D\mu^2:2\lambda\mu]}.\end{equation}

Since $z_1\neq 0$, it follows from Equation (5) that µ ≠ 0, λ ≠ 0, and

(6)\begin{equation} {[\lambda:\mu]=[x_1^2+y_1^2:z_1^2]=[Dz_1^2:x_1^2-y_1^2]}. \end{equation}

Let $\theta=\lambda/\mu$. Then Equations (3) and (6) show that $\theta \not \in k$. Hence, $k(\theta)=K$. Therefore, there exists an irreducible cubic polynomial $P(x)=ax^3+bx^2+cx+d \in k[x]$ such that $P(\theta)=0$. In particular, ad ≠ 0. From Equation (5), we have

(7)\begin{equation} \left(\dfrac{x_1}{z_1}\right)^2:\left(\dfrac{y_1}{z_1}\right)^2=\dfrac{\theta^2+D}{2\theta}:\dfrac{\theta^2-D}{2D}. \end{equation}

Step 1: Consider the weighted projective curve

(8)\begin{equation} \mathcal{C}_1\colon X^2-y^4=Dz^4. \end{equation}

By points on $\mathcal{C}_1$, we mean the equivalence classes of points $[X:y:z]$ in $\mathbb{P}^2_{2,1,1}(\overline{k})$ satisfying Equation (8). Since $x_i^2,y_i^2,y_iz_i,z_i^2$ are linearly dependent over k and $x_i\neq 0$, there exist $r,s,t\in \mathbb{Q}$ such that

\begin{equation*}x_i^2=ry_i^2+sy_iz_i+tz_i^2,\end{equation*}

for $i=1,2,3$. Consider the weighted projective curve

(9)\begin{equation} \mathcal{D}_1\colon X=ry^2+syz+tz^2. \end{equation}

By the weighted Bézout theorem [Theorem VIII.2][Reference Mondal10], the two curves $\mathcal{C}_1$ and $\mathcal{D}_1$ intersect at 4 points in $\mathbb{P}_{2,1,1}^2(\overline{k})$. We know that three of these four points are $[x_i^2:y_i:z_i]$ for $i=1,2,3$. Let $v_1(T)$ be the fourth point of intersection. Since the set $\{[x_i^2:y_i:z_i]:i=1,2,3\}$ is stable under the action of $\operatorname{Gal}(\overline{k}/k)$, $v_1(T)$ is fixed by $\operatorname{Gal}(\overline{k}/k)$. Therefore, $v_1(T)$ is a k-rational point. By the assumption in Theorem 1, we have $v_1(T)=[\pm 1:1:0]$.

$\bullet$ $v_1(T)=[1:1:0]$. Then Equation (9) gives r = 1. Since

\begin{equation*}(X-y^2-tz^2)^2-s^2y^2z^2=0,\end{equation*}

the homogeneous quartic in $l,m$,

\begin{equation*}(l^2+Dm^2-(l^2-Dm^2)-2tlm)^2-s^2(l^2-Dm^2)(2lm),\end{equation*}

has factors m and $P(l,m)$. Therefore, there exists $q\in k$ such that

(10)\begin{align} (l^2+Dm^2-(l^2-Dm^2)-2tlm)^2-2lms^2(l^2-Dm^2)=& 2qm(al^3+bl^2m\\& +clm^2+dm^3). \end{align}

Thus,

\begin{equation*}2m(Dm-tl)^2-ls^2(l^2-Dm^2)=q(al^3+bl^2m+clm^2+dm^3).\end{equation*}

Therefore,

(11)\begin{equation}\begin{cases}qa&=-s^2,\\ qb&=2t^2,\\ qc&=Ds^2-4Dt,\\ qd&=2D^2. \end{cases}\end{equation}

Hence,

\begin{equation*} q(c+Da)=-4Dt,\quad q^2bd=4D^2t^2,\ q\neq 0.\end{equation*}

Therefore,

(12)\begin{equation} (c+Da)^2=4bd. \end{equation}

Since $a,d\neq 0$, system (11) gives

(13)\begin{equation} \dfrac{a}{d}\equiv -2\pmod{k^2}. \end{equation}

$\bullet$ $v_1(T)=[-1:1:0]$. Then Equation (9) gives $r=-1$. Since

\begin{equation*}(X+y^2-tz^2)^2-s^2y^2z^2=0,\end{equation*}

the homogeneous quartic in $l,m,$

\begin{equation*}(l^2+Dm^2+l^2-Dm^2-2tlm)^2-s^2(l^2-Dm^2)(2lm),\end{equation*}

has factors l and $P(l,m)$. Therefore, there exists $q\in k$ such that

(14)\begin{equation} (2l^2-2tlm)^2-s^2(l^2-Dm^2)(2lm)=2ql(al^3+bl^2m+clm^2+dm^3).\end{equation}

Hence,

\begin{equation*}2l(l-tm)^2-ms^2(l^2-Dm^2)=q(al^3+bl^2m+clm^2+dm^3).\end{equation*}

Therefore,

(15)\begin{equation} \begin{cases} qa&=2,\\ qb&=-4t-s^2,\\ qc&=2t^2,\\ qd&=Ds^2. \end{cases}\end{equation}

Hence,

\begin{equation*} q^2ac=4t^2,\quad q\left(b+\dfrac{d}{D}\right)=-4t,\ q\neq 0.\end{equation*}

Therefore,

(16)\begin{equation} \left(b+\dfrac{d}{D}\right)^2=4ac.\end{equation}

Since $a,d\neq 0$, system (15) also gives

(17)\begin{equation} \dfrac{a}{d}\equiv 2D\pmod{k^2}. \end{equation}

Step 2: Consider the weighted projective curve

(18)\begin{equation} \mathcal{C}_2\colon x^4-Y^2={D}z^4.\end{equation}

By points on $\mathcal{C}_2$, we mean the equivalence classes of points $[x:Y:z]$ in $\mathbb{P}^2_{1,2,1}(\overline{k})$ satisfying Equation (18). Since $y_i^2,x_i^2,x_iz_i,z_i^2$ are linearly dependent over k and $y_i\neq 0$, there exist $r,s,t\in \mathbb{Q}$ such that

\begin{equation*}y_i^2=rx_i^2+sx_iz_i+tz_i^2,\end{equation*}

for $i=1,2,3$. Consider the weighted projective curve

(19)\begin{equation} \mathcal{D}_2\colon Y=rx^2+sxz+tz^2. \end{equation}

By the weighted Bézout theorem [Theorem VIII.2][Reference Mondal10], the two curves $\mathcal{C}_2$ and $\mathcal{D}_2$ intersect at 4 points in $\mathbb{P}_{1,2,1}^2(\overline{k})$. We know that three of these four points are $[x_i:y_i^2:z_i]$ for $i=1,2,3$. Let $v_2(T)$ be the fourth point of intersection. Since the set $\{[x_i:y_i^2:z_i]:i=1,2,3\}$ is stable under the action of $\operatorname{Gal}(\overline{k}/k)$, $v_2(T)$ is fixed by $\operatorname{Gal}(\overline{k}/k)$. Therefore, $v_2(T)$ is a k-rational point. By the assumption in Theorem 1, we have $v_2(T)=[1:\pm 1:0]$.

$\bullet$ $v_2(T)=[1:1:0]$. Then Equation (19) gives r = 1. We have

\begin{equation*}(Y-x^2-tz^2)^2-s^2{x^2z^2}=0,\end{equation*}

so that the homogeneous quartic in $l,m,$

\begin{equation*} (l^2-Dm^2-(l^2+Dm^2)-2tlm)^2-s^2(l^2+Dm^2)(2lm), \end{equation*}

has factors m and $P(l,m)$. Therefore, there exists $q\in k$ such that

(20)\begin{equation} (l^2-Dm^2-(l^2+Dm^2))^2-2tlm)^2-s^2(l^2+Dm^2)(2lm)=2qmP(l,m). \end{equation}

Thus,

\begin{equation*}2m(Dm+rl)^2-ls^2(l^2+Dm^2)=q(al^3+bl^2m+clm^2+dm^3).\end{equation*}

Hence,

(21)\begin{equation}\begin{cases} qa&=-s^2,\\ qb&=2r^2,\\ qc&=4Dr-Ds^2,\\ qd&=2D^2. \end{cases} \end{equation}

Therefore,

\begin{equation*} q(c-Da)=4Dr,\quad q^2bd=4{D^2}r^2,\ q\neq 0.\end{equation*}

Hence,

(22)\begin{equation} (c-Da)^2=4bd. \end{equation}

Since $a,d\neq 0$, system (21) gives

(23)\begin{equation} \dfrac{a}{d}\equiv -2\pmod{k^2}. \end{equation}

$\bullet$ $v_2(T)=[1:-1:0]$. Then Equation (19) gives $r=-1.$ We have

\begin{equation*}(Y+x^2-tz^2)^2-s^2{x^2z^2}=0,\end{equation*}

so that the homogeneous quartic in $l,m,$

\begin{equation*}(l^2-Dm^2+(l^2+Dm^2)-2rlm)^2-s^2(l^2+Dm^2)(2lm),\end{equation*}

has factors l and $P(l,m)$. Thus, there exists $q\in k$ such that

(24)\begin{align} (l^2-Dm^2+(l^2+Dm^2)-2tlm)^2-s^2(l^2+Dm^2)(2lm)=&2lq(al^3+bl^2m\\&+clm^2+dm^3). \end{align}

Hence,

\begin{equation*}2l(l-tm)^2-ms^2(l^2+Dm^2)=q(al^3+bl^2m+clm^2+dm^3).\end{equation*}

Therefore,

(25)\begin{equation}\begin{cases} qa&=2,\\ qb&=-4t-s^2,\\ qc&=2t^2,\\ qd&=-Ds^2. \end{cases} \end{equation}

Hence,

\begin{equation*} q^2ac=4t^2,\quad q\left(b-\dfrac{d}{D}\right)=-4r,\ q\neq 0.\end{equation*}

Thus,

(26)\begin{equation} \left(b-\dfrac{d}{D}\right)^2=4ac. \end{equation}

System (25) also gives

(27)\begin{equation} \dfrac{a}{d}\equiv -2D\pmod{k^2}. \end{equation}

It follows from (23), (27), (13) and (17) and the assumption that $D\not\in \pm k^2$ that there are only two compatible cases for $v_1(T)$ and $v_2(T)$.

Case 1: $v_1(T)=[1:1:0]$ and $v_2(T)=[1:1:0]$. From (12) and (22), we have

\begin{equation*}(c-Da)^2=(c+Da)^2.\end{equation*}

Since aD ≠ 0, we have c = 0. From (21), we have $r=s^2/4$. Thus,

\begin{equation*}{qP(x)=-s^2x^3+\dfrac{s^4}{8}x^2+2D^2.}\end{equation*}

Therefore θ satisfies

(28)\begin{equation} \theta^3-\dfrac{s^2}{8}\theta^2-2\dfrac{D^2}{s^2}=0. \end{equation}

Then (10) and (20) give

(29)\begin{equation} \dfrac{\theta^2+D}{2\theta}=\left(\dfrac{s}{4}+\dfrac{D}{2\theta}\right)^2,\qquad \dfrac{\theta^2-D}{2\theta}=\left(\dfrac{s}{4}-\dfrac{D}{2\theta}\right)^2. \end{equation}

From (7) and (29), we have

(30)\begin{equation} \dfrac{x_1}{z_1}=\pm \left(\dfrac{D}{s\theta}-\dfrac{s}{4}\right),\qquad\dfrac{y_1}{z_1}= \pm \left(\dfrac{D}{s\theta}+\dfrac{s}{4}\right). \end{equation}

Case 2: $v_1(T)=[-1:1:0]$ and $v_2(T)=[1:-1:0]$. This case also implies that $-1\in k^2$. From (17) and (25), we have

\begin{equation*}\left(b+\dfrac{d}{D}\right)^2=\left(b-\dfrac{d}{D}\right)^2.\end{equation*}

Since d ≠ 0, we have b = 0. Hence, from (15), we have $t=-s/4$. Therefore,

\begin{equation*}qP(x)=2x^3+\dfrac{s^4}{8}x+Ds^2.\end{equation*}

Therefore, θ satisfies

(31)\begin{equation} \theta^3+\dfrac{s^4}{16}\theta+\dfrac{Ds^2}{2}=0. \end{equation}

It follows from (14) and (24) that

(32)\begin{equation} \dfrac{\theta^2+D}{2\theta}=\left(\dfrac{\theta}{s}-\dfrac{s}{4}\right)^2,\qquad \dfrac{\theta^2-D}{2\theta }=\left(i\left(\dfrac{\theta}{s}+\dfrac{s}{4}\right)\right)^2,\end{equation}

where $i\in k$ such that $i^2=-1\in k$. From (7) and (32), we have

(33)\begin{equation} \dfrac{x_1}{z_1}=\pm \left(\dfrac{\theta}{s}-\dfrac{s}{4}\right),\qquad \dfrac{y_1}{z_1}=\pm i\left(\dfrac{\theta}{s}+\dfrac{s}{4}\right). \end{equation}

3. Proof of Corollary 1

Corollary 1 is a consequence of Theorem 1 and the following lemma due to Izadi et al. [Reference Izadi, Naghdali and Brown9].

Lemma 1.

  • (1) For prime numbers, $p\equiv 3$ (mod 16), then the equations $x^2{-}y^4={\pm} p^3z^4$ only have solutions $X=\pm y^2$ and z = 0 in $\mathbb{Q}(i)$.

  • (2) For prime numbers, $p\equiv 11$ (mod 16), then the equations $X^2{-}y^4={\pm} pz^4$ only have solutions $X=\pm y^2$ and z = 0 in $\mathbb{Q}(i)$.

Proof. See Izadi [Reference Izadi, Naghdali and Brown9, Theorems 3.2 and 3.4].

Acknowledgements

The author is supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) (grant number 101.04-2023.21).

Competing Interest

The author declares none.

References

Bajolet, A., Dupuy, B., Luca, F. and Togbe, A., On the Diophantine equation $x^4- q^4=py^r$, Publ. Math. Debrecen 79 (2011), 269282.CrossRefGoogle Scholar
Bennett, M. A., Integers presented by $x^4-y^4$ revisited, Bull. Aust. Math. Soc. 76 (2007), 133136.Google Scholar
Bremner, A., Some quartic curves with no points in any cubic field, Proc. Lond. Math. Soc. 52(3): (1986), 193214.CrossRefGoogle Scholar
Cao, Z., The Diophantine equations $x^4-y^4 = z^p$ and $x^4-1 = dy^q$, C. R. Math. Rep. Acad. Sci. Canada 21 (1999), 2327.Google Scholar
Cassels, J. W. S., The arithmetic of certain quartic curves, Proc. Roy. Soc. Edinburgh Sect. A 100(3–4) (1985), 201218.CrossRefGoogle Scholar
Dabrowski, A., On the integers represented by $x^4-y^4$, Bull. Aust. Math. Soc. 76 (2007), 133136.CrossRefGoogle Scholar
Darmon, H., The equation $x^4-y^4= z^p$, C. R. Math. Rep. Acad. Sci. Canada 15(6) (1993), 286290.Google Scholar
Faltings, G., Endlichkeitssätze für abelsche Varietä ten über Zahlkörpern, Invent. Math. 73(3) (1983), 349366.CrossRefGoogle Scholar
Izadi, F., Naghdali, R. F. and Brown, P. G., Some quartic Diophantine equations in Gaussian integers, Bull. Aust. Math. Soc. 92 (2015), 187194.CrossRefGoogle Scholar
Mondal, P., How many zeroes? Counting Solutions of Systems of Polynomials via Toric Geometry at Infinity. CMS/CAIMS Books in Mathematics, Volume 2 (Switzerland: Springer, 2021).CrossRefGoogle Scholar
Savin, D., On the Diophantine equation $x^4-q^4=py^5$, Ital. J. Pure Appl. Math. 26 (2009), 103108.Google Scholar
Serre, J. P., Topics in Galois Theory, Research Notes in Mathematics, Book 1, 2nd edition (Natick, MA: A K Peters/CRC Press, 2016).CrossRefGoogle Scholar
Silverman, J. H., Rational points on certain families of curves of genus at least two, Proc. Lond. Math. Soc. 55 (1987), 465481.CrossRefGoogle Scholar