Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T14:08:13.999Z Has data issue: false hasContentIssue false

On the central Haagerup tensor product*

Published online by Cambridge University Press:  20 January 2009

Pere Ara
Affiliation:
Departament de Matemåtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
Martin Mathieu
Affiliation:
Mathematisches Institut Der Universität Tübingen, Auf Der Morgenstelle 10, D-72076 Tübingen, German
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a large class of C*-algebras including all von Neumann algebras, the central Haagerup tensor product of the multiplier algebra with itself has an isometric representation as completely bounded operators.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1994

References

REFERENCES

1.Allen, S. D., Sinclair, A. M. and Smith, R. R., The ideal structure of the Haagerup tensor product, (1992), preprint.Google Scholar
2.Ara, P., The extended centroid of C*-algebras, Arch. Math. 54 (1990), 358364.CrossRefGoogle Scholar
3.Ara, P., On the symmetric algebra of quotients of a C*-algebra, Glasgow Math. J. 32 (1990), 377379.CrossRefGoogle Scholar
4.Ara, P. and Mathieu, M., A local version of the Dauns-Hofmann theorem, Math. Z. 208 (1991), 349353.CrossRefGoogle Scholar
5.Ara, P. and Mathieu, M., An application of local multipliers to centralizing mappings on C*-algebras, Quart. J. Math. Oxford (2), 44 (1993), 129138.CrossRefGoogle Scholar
6.Ara, P. and Mathieu, M., Local multipliers of C*-algebras, in preparation.Google Scholar
7.Blecher, D. P. and Paulsen, V. I., Tensor products of operator spaces, J. Funct. Anal. 99 (1991), 262292.CrossRefGoogle Scholar
8.Blecher, D. P., Ruan, Zh.-J. and Sinclair, A. M., A characterisation of operator algebras, J. Funct. Anal. 89 (1990), 188201.CrossRefGoogle Scholar
9.Blecher, D. P. and Smith, R. R., The dual of the Haagerup tensor product, J. London Math. Soc. (2), 45 (1992), 126144.CrossRefGoogle Scholar
10.Chatterjee, A. and Sinclair, A. M., An isometry from the Haagerup tensor product into completely bounded operators, J. Operator Theory, in press.Google Scholar
11.Chatterjee, A. and Smith, R. R., The central Haagerup tensor product and maps between von Neumann algebras, J. Fund. Anal. 112 (1993), 97120.CrossRefGoogle Scholar
12.Christensen, E., Effros, E. G. and Sinclair, A. M., Completely bounded multilinear maps and C*-algebraic cohomology, Invent. Math. 90 (1987), 279296.CrossRefGoogle Scholar
13.Christensen, E. and Sinclair, A. M., A survey of completely bounded operators, Bull. London Math. Soc. 21 (1989), 417448.CrossRefGoogle Scholar
14.Christensen, E. and Sinclair, A. M., On the vanishing of Hn (A, A*) for certain C*-algebras, Pacific J. Math. 137 (1989), 5563.CrossRefGoogle Scholar
15.Curto, R. E., Spectral properties of elementary operators, in Elementary Operators and Applications (Proc. Int. Workshop, Blaubeuren, June 1991; World Scientific, Singapore, 1992), 352.Google Scholar
16.Deckard, D. and Pearcy, C., On matrices over the ring of continuous complex valued functions on a Stonian space, Proc. Amer. Math. Soc. 14 (1963), 322328.CrossRefGoogle Scholar
17.Effros, E. G. and Kishimoto, A., Module maps and Hochschild-Johnson cohomology, Indiana Univ. Math. J. 36 (1987), 257276.CrossRefGoogle Scholar
18.Effros, E. G. and Ruan, Zh.-J., A new approach to operator spaces, Canad. Math. Bull. 34 (1991), 329337.CrossRefGoogle Scholar
19.Elliott, G. A., Automorphisms determined by multipliers on ideals of a C*-algebra, J. Funct. Anal. 23 (1976), 110.CrossRefGoogle Scholar
20.Elliott, G. A. and Zsidó, L., Almost uniformly automorphism groups of operator algebras, J. Operator Theory 8 (1982), 227277.Google Scholar
21.Fialkow, L. A., Structural properties of elementary operators, in Elementary Operators and Applications (Proc. Int. Workshop, Blaubeuren, June 1991; World Scientific, Singapore, 1992), 55113.Google Scholar
22.Fong, C. K. and Sourour, A. R., On the operator identity ΣAkXBkΞ0, Canad. J. Math. 31 (1979), 845857.CrossRefGoogle Scholar
23.Gillman, L. and Jerison, M., Rings of Continuous Functions (Springer-Verlag, New York-Heidelberg-Berlin, 1976).Google Scholar
24.Grove, K. and Pedersen, G. K., Diagonalising matrices over C(X), J. Funct. Anal. 59 (1984), 6589.CrossRefGoogle Scholar
25.Haagerup, U., The α-tensor product of C*-algebras, (1981), unpublished.Google Scholar
26.Kharchenko, V. K., Generalized identities with automorphisms, Algebra i Logika 14 (1975), 215237; English transl. (1976), 132–148.Google Scholar
27.Kharchenko, V. K., Automorphisms and Derivations of Associative Rings (Kluwer Academic Publ., Dordrecht, 1991).CrossRefGoogle Scholar
28.Magajna, B., On the relative reflexivity of finitely generated modules of operators, Trans. Amer. Math. Soc. 327 (1991), 221249.CrossRefGoogle Scholar
29.Mathieu, M., Spectral theory for multiplication operators on C*-algebras, Proc. Roy. Irish Acad. 83A (1983), 231249.Google Scholar
30.Mathieu, M., A Remark on Elementary Operators (Semesterbericht Funktionalanalysis WS 83/84, Tübingen, 1984), 239247.Google Scholar
31.Mathieu, M., Generalising Elementary Operators (Semesterbericht Funktionalanalysis SS 88, Tübingen, 1988), 133153.Google Scholar
32.Mathieu, M., Elementary operators on prime C*-algebras, I, Math. Ann. 284 (1989), 223244.CrossRefGoogle Scholar
33.Mathieu, M., The symmetric algebra of quotients of an ultraprime Banach algebra, J. Austral. Math. Soc. 50 (1991), 7587.CrossRefGoogle Scholar
34.Passman, D. S., Computing the symmetric ring of quotients, J. Algebra 105 (1987), 207235.CrossRefGoogle Scholar
35.Paulsen, V. I. and Smith, R. R., Multilinear maps and tensor norms on operator systems, J. Funct. Anal. 73 (1987), 256276.CrossRefGoogle Scholar
36.Pedersen, G. K., Approximating derivations on ideals of C*-algebras, Invent. Math. 45 (1978), 299305.CrossRefGoogle Scholar
37.Pedersen, G. K., C*-algebras and their Automorphism Groups (Academic Press, London, 1979).Google Scholar
38.Pop, F. and Smith, R. R., Schur products and completely bounded maps on finite von Neumann algebras, (1992), preprint.Google Scholar
39.Smith, R. R., Completely bounded module maps and the Haagerup tensor product, J. Funct. Anal. 102 (1991), 156175.CrossRefGoogle Scholar
40.Smith, R. R., Elementary operators and the Haagerup tensor product, in Elementary Operators and Applications (Proc. Int. Workshop, Blaubeuren, June 1991; World Scientific, Singapore, 1992), 233241.Google Scholar
41.Takesaki, M., Theory of Operator Algebras I (Springer-Verlag, New York-Heidelberg-Berlin, 1979).CrossRefGoogle Scholar