Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T13:56:28.135Z Has data issue: false hasContentIssue false

On the absolute summability of series by Rieszian means

Published online by Cambridge University Press:  20 January 2009

J. M. Hyslop
Affiliation:
University of Glasgow.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I begin by recalling the well known definitions for summability by the methods of Cesaro and Riesz.

The series Σan is said to be summable (C, K), k> – 1, to the sum s if, as n → ∞

where

and is defined formally by the relation

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1936

References

1.Bosanquet, L.S., Journal London Math. Soc., 11 (1936), 1115.CrossRefGoogle Scholar
2.Fekete, M., Math. és termész. ért., 29 (1911), 719726.Google Scholar
3.Fekete, M., Math. és termész. ért., 32 (1914), 389425.Google Scholar
4.Fekete, M., Proc. Edinburgh Math. Soc. (2), 3 (19321933), 132134.CrossRefGoogle Scholar
5.Hardy, G.H. and Riesz, M., The General Theory of Dirichlet Series. (Cambridge Tract No. 18).Google Scholar
6.Hobson, E.W., The Theory of Functions of a Real Variable II (1926).Google Scholar
7.Kogbetliantz, E., Bull. des Sciences Math. (2), 49 (1925), 234256.Google Scholar
8.Obreschkoff, N., Comptes Rendus, 186 (1928), 215.Google Scholar
9.Obreschkoff, N., Math. Zeitschrift, 30 (1929), 375386.CrossRefGoogle Scholar
10.Whittaker, J.M., Proc. Edinburgh Math. Soc. (2), 2 (19301931), 15.CrossRefGoogle Scholar
11.Winn, C.E., Proc. Edinburgh Math. Soc. (2), 3 (19321933), 173178.CrossRefGoogle Scholar