Hostname: page-component-5cf477f64f-mgq6s Total loading time: 0 Render date: 2025-04-08T07:42:09.564Z Has data issue: false hasContentIssue false

On some products of groups

Published online by Cambridge University Press:  02 April 2025

Luigi Iorio
Affiliation:
Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, Napoli, Campania, Italy
Marco Trombetti*
Affiliation:
Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, Napoli, Campania, Italy
*
Corresponding author: Marco Trombetti, email: [email protected]

Abstract

A classical result of Reinhold Baer states that a group G = XN, which is the product of two normal supersoluble subgroups X and N, is supersoluble if and only if Gʹ is nilpotent. This result has been weakened in [6] for a finite group G: in fact, we do not need that both X and N are normal, but only that N is normal and X permutes with every maximal subgroup of each Sylow subgroup of N.

In our paper, we improve the result mentioned above by showing that we only need X to permute with the maximal subgroups of the non-cyclic Sylow subgroups of N. Also, we extend this result (and several others) to relevant classes of infinite groups.

The central idea behind our results stems from grasping the key aspects of what happens in [6]. It turns out that tensor products play a very crucial role, and it is precisely this shift of perspective that makes it possible not only to improve those results but also extend them to infinite groups.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asaad, M. and Shaalan, A., On the supersolvability of finite groups, Arch. Math. 53 (1989), 318326.Google Scholar
Baer, R., Classes of finite groups and their properties, Illinois J. Math. 1 (1957), 115187.CrossRefGoogle Scholar
Baer, R., Überauflösbare Gruppen, Abh. Math. Sem. Univ. Hamburg 23 (1957), 1128.CrossRefGoogle Scholar
Ballester-Bolinches, A., Esteban-Romero, R. and Asaad, M., Products of finite groups. De Gruyter (Berlin, 2010).Google Scholar
Ballester-Bolinches, A., Esteban-Romero, R., Ferrara, M., Pérez-Calabuig, V. and Trombetti, M., Finite skew braces of square-free order and supersolubility, Forum Math. Sigma 12(e39) (2024), 133.Google Scholar
Ballester-Bolinches, A., Madanha, S. Y., Pedraza-Aguilera, M. C. and Wu, X., On some products of finite groups, Proc. Edinburgh Math. Soc. 66 (2023), 8999.CrossRefGoogle Scholar
Beidleman, J. C. and Heineken, H., Mutually permutable subgroups and group classes, Arch. Math. (Basel) 85 (2005), 1830.CrossRefGoogle Scholar
Cooper, C. D. H., Power automorphisms of a group, Math. Z. 107 (1968), 335356.Google Scholar
de Giovanni, F. and Trombetti, M., Infinite minimal non-hypercyclic groups, J. Algebra Appl. 14 (2015), 1550143, 15.Google Scholar
de Giovanni, F. and Trombetti, M., A note on large characteristic subgroups, Comm. Algebra 46 (2018), 46544662.Google Scholar
de Giovanni, F., Trombetti, M. and Wehrfritz, B. A. F., Linear groups whose proper subgroups are close to being nilpotent, Comm. Algebra 49 (2021), 30203033.CrossRefGoogle Scholar
de Giovanni, F., Trombetti, M. and Wehrfritz, B. A. F., Subnormality in linear groups, J. Pure Appl. Algebra 227(107185) (2023), 16.CrossRefGoogle Scholar
de Giovanni, F., Trombetti, M. and Wehrfritz, B. A. F., Hall classes in linear groups, J. Group Theory 27(2) (2024), 383412.Google Scholar
de Giovanni, F., Trombetti, M. and Wehrfritz, B. A. F., Hall classes of groups with a locally finite obstruction, J. Austral. Math. Soc. 117 (2024), 1643.Google Scholar
de Giovanni, F., Trombetti, M. and Wehrfritz, B. A. F., Hall classes of groups, RACSAM 118(50) (2024), 18.Google Scholar
Doerk, K. and Hawkes, T. O., Finite soluble groups. De Gruyter (Berlin, 1992).Google Scholar
Ferrara, M. and Trombetti, M., On groups factorized by mutually permutable subgroups, Results Math. 77(211) (2022), 15.CrossRefGoogle Scholar
Ferrara, M. and Trombetti, M., Periodic linear groups factorized by mutually permutable subgroups, Czechoslovak Math. J. 73 (2023), 12291254.CrossRefGoogle Scholar
Franciosi, S. and de Giovanni, F., Groups with many supersoluble subgroups, Ricerche Mat. 40 (1991), 321333.Google Scholar
Hall, P., Some sufficient conditions for a group to be nilpotent, Illinois J. Math. 2 (1958), 787801.CrossRefGoogle Scholar
Hartley, B., A dual approach to Černikov modules, Math. Proc. Camb. Phil. Soc. 82 (1977), 215239.Google Scholar
Monakhov, V. S., On the supersoluble residual of mutually permutable products, PFMT 34 (2018), 6970.Google Scholar
Newell, M., and Trombetti, M., A local approach to stability groups, J. Algebraic Combin. 60(2) (2024), 599602.CrossRefGoogle Scholar
Newman, M. F., On a class of nilpotent groups, Proc. London Math. Soc. (3) 10 (1960), 365375.CrossRefGoogle Scholar
Phillips, R. E. and Rainbolt, J. G., Images of periodic linear groups, Arch. Math. (Basel) 71 (1998), 97106.Google Scholar
Robinson, D. J. S., A property of the lower central series of a group, Math. Z. 107 (1968), 225231.Google Scholar
Robinson, D. J. S., Finiteness Conditions and Generalized Soluble Groups (Springer, Berlin, 1972).CrossRefGoogle Scholar
Robinson, D. J. S., A Course in the Theory of Groups (Springer, New York, 1991).Google Scholar
Schmidt, R., Subgroup lattices of groups. De Gruyter (Berlin, 1994).Google Scholar
Segal, D., Polycyclic Groups (Cambridge University Press, Cambridge, 2005).Google Scholar
Vasil’ev, A. F., Vasil’eva, T. I. and Tyutyanov, V. N., On the finite groups of supersoluble type, Sib. Math. J. 51 (2010), 10041012.CrossRefGoogle Scholar
Wehrfritz, B. A. F., Soluble periodic linear groups, Proc. London Math. Soc. (3) 18 (1968), 141157.Google Scholar
Wehrfritz, B. A. F., Supersoluble and locally supersoluble linear groups, J. Algebra 17 (1971), 4158.Google Scholar
Wehrfritz, B. A. F., Infinite Linear Groups (Springer, Berlin, 1973).CrossRefGoogle Scholar