Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T06:28:19.741Z Has data issue: false hasContentIssue false

On normal subgroups of direct products

Published online by Cambridge University Press:  20 January 2009

F. E. A. Johnson
Affiliation:
University College London, Gower Street, London WC1E 6BT, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the equivalence classes of normal subdirect products of a product of free groups Fn1 × … × Fnk under the simultaneous equivalence relations of commensurability and conjugacy under the full automorphism group. By abelianisation, the problem is reduced to one in the representation theory of quivers of free abelian groups. We show there are infinitely many such classes when k≧3, and list the finite number of classes when k = 2.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1990

References

REFERENCES

1.Baumslag, G. and Roseblade, J. E., Subgroups of direct products of free groups, London Math. Soc. (2), 30 (1984), 4452.CrossRefGoogle Scholar
2.Bernstein, I. N., Gelfand, I. M. and Ponomarev, V. A., Coxeter functors and Gabriel's Theorem, Russian Math. Surveys 28 (1973), 1732.CrossRefGoogle Scholar
3.Carr, N. C., Subgroups of a product of surface groups, in preparation.Google Scholar
4.Gabriel, P., Unzerlegbare Darstellungen 1, Manuscripta Math. 6, (1973), 71103.CrossRefGoogle Scholar
5.Johnson, F. E. A., Automorphisms of direct products of groups and their geometric realisations, Math. Ann. 263 (1983), 343364.CrossRefGoogle Scholar
6.Magnus, W., Karrass, A. and Solitar, D., Combinatorial group theory (Dover 1976).Google Scholar
7.Magnus, W., Über n-dimensionale Gittertransformationen, Acta Math. 64 (1934), 353367.CrossRefGoogle Scholar
8.Nielsen, J., Die Gruppe der dreidimensionalen Gittertransformationen, Kgl. Danske Videns-kabernes Selbskab. Math. Fys. Meddelser V, 12, (1924), 129.Google Scholar
9.Raghunathan, M. S., Discrete subgroups of Lie groups Ergebnisse der Math. 68, Springer-Verlag 1972.CrossRefGoogle Scholar