Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T05:53:16.476Z Has data issue: false hasContentIssue false

On Keller's conjecture for certain cyclic groups

Published online by Cambridge University Press:  20 January 2009

A. D. Sands
Affiliation:
The UniversityDundeeScotland
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Keller (6) considered a generalisation of a problem of Minkowski (7) concerning the filling of Rn by congruent cubes. Hajós (4) reduced Minkowski's conjecture to a problem concerning the factorization of finite abelian groups and then solved this problem. In a similar manner Hajós (5) reduced Keller's conjecture to a problem in the factorization of finite abelian groups, but this problem remains unsolved, in general. It occurs also as Problem 80 in Fuchs (3). Seitz (10) has obtained a solution for cyclic groups of prime power order. In this paper we present a solution for cyclic groups whose order is the product of two prime powers.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1979

References

REFERENCES

(1) De Bruijn, N. G., On the factorization of cyclic groups, Indag. Math. 15 (1953), 370377.CrossRefGoogle Scholar
(2) Fraser, O. and Gordon, B., Solution to a problem of L. Fuchs, Quart. J. Math. Oxford, (2) 25 (1974), 18.CrossRefGoogle Scholar
(3) Fuchs, L., Abelian Groups (Budapest, 1958).Google Scholar
(4) HaÓs, G., Über einfache und mehrfache Bedeckung des n-dimensionalen Raumes miteinem Würfelgitter, Math. Zeit. 47 (1942), 427467.Google Scholar
(5) HaÓs, G., Sur la factorisation des groupes abèliens, Casopis Pest. Mat. Fys. 74 (1949), 157162.Google Scholar
(6) Keller, O. H., Über die luckenlose Einfulling des Raumes Würfeln, J. Reine Angew. Math. 163 (1930), 231248.CrossRefGoogle Scholar
(7) Minkowski, H., Diophantische Approximationem (Leipzig, 1907).CrossRefGoogle Scholar
(8) RÉdei, L., Die neue Theorie der endlichen abelschen Gruppen und Verallgemeinerung des Haupsatzes von Hajòs, Acta Math. Acad. Sci. Hungar. 16 (1965), 329373.CrossRefGoogle Scholar
(9) Sands, A. D., On a conjecture of G. Hajos, Glasgow Math. J. 15 (1974), 8889.CrossRefGoogle Scholar
(10) Seitz, K., Investigations in the Hajòs-Redei Theory of Finite Abelian Groups (Karl Marx University, Budapest, 1975). (MR 53 no. 655 (1977)).Google Scholar
(11) Swenson, C. B., Direct sum subset decompositions of abelian groups, Ph.D. Thesis Washington State University, 1972).Google Scholar