Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-30T23:59:40.630Z Has data issue: false hasContentIssue false

On Graphical Integration

Published online by Cambridge University Press:  20 January 2009

Charles Goldziher
Affiliation:
Budapest
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The theory of graphical integration is founded on the graphical integration of parabolic arcs. The details and the different technical applications of these problems are developed in the fundamental work of J. Massau; we find there very simple pure constructive methods for the case of parabolas till the 3rd order.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1911

References

1 Mémoire sur l'intégration graphique et ses applications (Annales de l'Assoc, des ingénieurs sortis des écoles spéciales de Gand, 18781890), chap. II., §2,3, 4.Google Scholar

2 Calcul graphique et Nomographie (Encyclop. scientif.; Paris, O. Doin, 1908), Part I., chap. II.Google Scholar

3 See d'Ocagne, p. 95–101.

4 Die Torsion eines Rotationskörpers um seine Axe (Göttingen, 1907, p. 1417; and Zeitschrijt für Math, und Phys., 1907).Google Scholar

3 See d'Ocagne, p. 95–101.

5 See d'Ocagne, p. 75–77.

6 See Muirhead, R. F.. “A method of successive graphical integrations” (Proc. Ed. Math. Soc, Vol. XXIX., 19101911).Google Scholar