No CrossRef data available.
Published online by Cambridge University Press: 08 January 2016
Let AT(Δ) be the asymptotic universal Teichmüller space, viewed as the space of all asymptotic Teichmüller equivalence classes [[μ]]. We show that if μ is asymptotically extremal in AT(Δ) and hp([[μ]]) < h([[μ]]) for some boundary point p of Δ, then there are infinitely many geodesics joining [[0]] and [[μ]] in AT(Δ). As a corollary, a necessary condition for a complex dilatation to be uniquely extremal in AT(Δ) is given.