Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-12-01T00:07:34.313Z Has data issue: false hasContentIssue false

On Clifford's theorem and ramification indices for symplectic modules over a finite field

Published online by Cambridge University Press:  20 January 2009

Robert W. Van Der Waall
Affiliation:
Mathematisch Instituut, universiteit Van Amsterdam, Roetersstraat 15, 1018 WB Amsterdam, The Netherlands
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let K be a field, G a finite group. Let V be an (irreducible) KG-module, where KG is the group algebra consisting of all formal sums . The action of on α = ∑aθg on element ν ∈ V obeys the rule If H is a subgroup of G, then, restricting the action of G on V to H, V is also a KH-module. Notation: VH.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1987

References

REFERENCES

1.Berger, T. R., Representation theory and solvable groups: length type problems, Proc. Sympos. Pure Math. 37 (1980), 431441.CrossRefGoogle Scholar
2.Dade, E. C., Monomial characters and normal subgroups, Math. Z. 178 (1981), 401420.Google Scholar
3.Huppert, B., Endliche Gruppen I (Springer Verlag, Berlin-Heidelberg-New York, 1967).CrossRefGoogle Scholar
4.Huppert, B. and Blackburn, N., Finite Groups II (Springer Verlag, Berlin-Heidelberg-New York, 1982).Google Scholar
5.ISAACS, I. M., Character Theory of Finite Groups (Academic Press, New York-London, 1976).Google Scholar
6.Isaacs, I. M., Characters of solvable groups, Proc. Sympos. Pure Math. 37 (1980), 377384.Google Scholar
7.ISAACS, I. M., Primitive characters, normal subgroups and M-groups, Math. Z. 177 (1981), 267284.Google Scholar
8.Isaacs, I. M., Abelian normal subgroups of M-groups, Math. Z. 182 (1983), 205221.Google Scholar
9.Parks, A. E., Nilpotent by supersolvable M-groups, Canad. J. Math. 37 (1985), 934962.Google Scholar
10.Van Der Waall, R. W., Minimal non-M-groups, Indag. Math. 42 (1980), 93106.Google Scholar
11.Van Der Waall, R. W., Minimal non-M-groups III, Indag. Math. 45 (1983), 483492.Google Scholar
12.Van Der Waall, R. W. and Hekster, N. S., Irreducible constituents of induced monomial characters, J. Algebra, to appear.Google Scholar
13.Willems, W., Induzierte und eingeschränkte Moduln über Gruppenringen (Diplomarbeit, Mainz, 1973).Google Scholar