Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T19:29:07.776Z Has data issue: false hasContentIssue false

On an automorphism of Hilb[2] of certain K3 surfaces

Published online by Cambridge University Press:  19 January 2011

Ekaterina Amerik
Affiliation:
Laboratoire de Mathématiques, Université Paris-Sud, Bâtiment 425, 91405 Orsay, France ([email protected]) and MPIM Bonn, Vivatsgasse 7, 53111 Bonn, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Following some remarks made by O'Grady and Oguiso, the potential density of rational points on the second punctual Hilbert scheme of certain K3 surfaces is proved.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2011

References

1.Amerik, E. and Campana, F., Fibrations méromorphes sur certaines variétés à fibré canonique trivial, Pure Appl. Math. Q. 4(2) (2008), 509545.CrossRefGoogle Scholar
2.Beauville, A., Some remarks on Kähler manifolds with c 1 = 0, in Classification of algebraic and analytic manifolds (Katata 1982), Progress in Mathematics, Volume 39 (Birkhäuser, Boston, 1983).Google Scholar
3.Beauville, A., Variétés dont la première classe de Chern est nulle, J. Diff. Geom. 18 (1983), 755782.Google Scholar
4.Bogomolov, F. A. and Tschinkel, Yu., Density of rational points on elliptic K3 surfaces, Asian J. Math. 4 (2000), 351368.CrossRefGoogle Scholar
5.Hassett, B. and Tschinkel, Yu., Abelian fibrations and rational points on symmetric products, Int. J. Math. 11(9) (2000), 11631176.CrossRefGoogle Scholar
6.Maulik, D., Poonen, B. and Voisin, C., Néron-Severi groups under specialization, preprint (arXiv: 0907.4781; 2009).Google Scholar
7.Morrison, D., On K3 surfaces with large Picard number, Invent. Math. 75 (1984), 105121.CrossRefGoogle Scholar
8.O'Grady, K., Involutions and linear systems on holomorphic symplectic manifolds, Geom. Funct. Analysis 15 (2005), 12231274.CrossRefGoogle Scholar
9.Oguiso, K., A remark on dynamical degrees of automorphisms of hyperkähler manifolds, Manuscr. Math. 130 (1) (2009), 101111.CrossRefGoogle Scholar
10.Pjateckiĭ-Šapiro, I. I. and Šafarevič, I. R., A Torelli theorem for algebraic surfaces of type K3, Math. USSR Izv. 5(3) (1971), 547588.CrossRefGoogle Scholar
11.Saint-Donat, B., Projective models of K3 surfaces, Am. J. Math. 96 (1974), 602639.CrossRefGoogle Scholar
12.Verbitsky, M., Cohomology of compact hyperkähler manifolds and applications, Geom. Funct. Analysis 6 (1996), 601611.CrossRefGoogle Scholar