Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T00:37:28.053Z Has data issue: false hasContentIssue false

On a non-convex hyperbolic differential inclusion

Published online by Cambridge University Press:  20 January 2009

Vasile Staicu
Affiliation:
International School for Advanced StudiesStrada Costiera II.34014 TriesteItaly
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove the existence of a solution u(.,.;α,β) of the Darboux problem uxyF(x, y, u), u(x,0) = α(x), u(0, y) = β(y), which is continuous with respect to (α,β). We assume that F is Lipschitzean with respect to u but not necessarily convex valued.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1992

References

REFERENCES

1.Aubin, J. P. and Cellina, A., Differential Inclusions (Springer-Verlag, Berlin, 1984).CrossRefGoogle Scholar
2.Bressan, A. and Colombo, G., Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), 6986.CrossRefGoogle Scholar
3.Cinquini-Cibrario, M. and Cinquini, S., Equazioni a Derivate Parziali di Tipo Iperbolico Parziali (Edizioni Cremonese, Roma, 1964).Google Scholar
4.Colombo, R. M., Fryszkowski, A., Rzezuchowski, T. and Staicu, V., Continuous selection of solutions sets of Lipschitzean differential inclusions, Funkcial. Ekvac. 34 (1991), 321330.Google Scholar
5.De Blasi, F. S. and Myjak, J., On the set of solutions of a differential inclusion, Bull. Inst. Math. Acad. Sinica. 14 (1986), 271275.Google Scholar
6.De Blasi, F. S. and Myjak, J., On the structure of the set of solutions of the Darboux problem of hyperbolic equations, Proc. Edinburgh Math. Soc. 29 (1986), 714.CrossRefGoogle Scholar
7.Filippov, A. F., Classical solutions of differential equations with multivalued right hand side, SIAM J. Control 5 (1967), 609621.CrossRefGoogle Scholar
8.Fryszkowski, A., Continuous selections for a class of nonconvex multivalued maps, Studia Math. 76 (1983), 163174.CrossRefGoogle Scholar
9.Hiai, F. and Umegaki, H., Integrals, conditions expectations and martingales of multivalued functions, J. Multivariate Anal. 1 (1971), 149182.Google Scholar
10.Marano, S., Generalized solutions of partial differential inclusions depending on a parameter, Rend. Acad. Naz. Sci. XL Mem. Mat. 107 (1989), 281295.Google Scholar
11.Teodoru, G., Le problem de Darboux pour une equation aux derivees partielles multivoque, An. Stiint. Univ. “Al. I. Cuza” lasi Sect. I a Mat. 31 (1985), 173176.Google Scholar
12.Teodoru, G., Sur le problem de Darboux pour l'equation ∂2z/∂xyF(x, y, z), An. Stiint. Univ. “Al. I. Cuza” lasi Sect. I a Mat. 32 (1986), 41–19.Google Scholar
13.Teodoru, G., Continuous selections for multifunctions satisfying Carathéodory type conditions. The Darboux problem associated to a multivalued equation, Proc. Itinerant Seminar on Functional Equations, Approximation and Convexity, Faculty of Mathematics, Cluj-Napoca, Preprint 6 (1987), 281286.Google Scholar