Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T13:45:04.892Z Has data issue: false hasContentIssue false

The number of conjugacy classes in some quotients of the Nottingham group

Published online by Cambridge University Press:  20 January 2009

P. P. Pálfy
Affiliation:
Mathematical Institute of the Hungarian Academy of Sciences, Budapest, P.O. Box 127 H-1364, Hungary E-mail address; [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We determine the number of conjugacy classes in the natural quotient groups of the Nottingham group over the p-element field up to the quotient of order p3p+1.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1998

References

REFERENCES

1.Boston, N. and Walker, J. L., Two-groups with few conjugacy classes, to appear.Google Scholar
2.Fernández-Alcober, G. A. and Shepherd, R., On the order of p-groups of abundance zero, J. Algebra, to appear.Google Scholar
3.Huppert, B., Endliche Gruppen I, (Springer-Verlag, Berlin–Heidelberg–New York, 1967).Google Scholar
4.Johnson, D. L., The group of formal power series under substitution, J. Austral. Math. Soc. Ser. A 45 (1988), 296302.CrossRefGoogle Scholar
5.Poland, J., Two problems on finite groups with k conjugate classes, J. Austral. Math. Soc. Ser. A 8 (1968), 4955.CrossRefGoogle Scholar
6.Pyber, L., Finite groups have many conjugacy classes, J. London Math. Soc. (2) 46 (1992), 239249.CrossRefGoogle Scholar
7.Rothe, B., Konjugiertenklassen in Gruppen von Primzahlpotenzordnung, (Diplomarbeit, RWTH Aachen, 1993).Google Scholar
8.Sangroniz, J., Conjugacy classes and characters in some quotients of the Nottingham group, (Universidad del País Vasco, Bilbao, 1996), preprint.Google Scholar
9.Schönert, M. et al. , GAP – Groups, Algorithms, and Programming, (Lehrstuhl D für Mathematik, Rheinisch-Westfälische Technische Hochschule, Aachen, fifth edition, 1995).Google Scholar
10.Shalev, A., Finite p-groups, in Finite and Locally Finite Groups (B. Hartley et al. eds., NATO ASI Series 471, 1995), 401450.Google Scholar
11.York, I. O., The group of formal power series under substitution, (Ph.D. thesis, Nottingham, 1990).Google Scholar
12.York, I. O., The exponent of certain finite p-groups, Proc. Edinburgh Math. Soc. 33 (1990), 483490.CrossRefGoogle Scholar