No CrossRef data available.
Published online by Cambridge University Press: 20 January 2009
In this paper, we obtain some characterizations for the weighted weak type (1, q) inequality to hold for the Hardy-Littlewood maximal operator in the case 0<q<1; prove that there is no nontrivial weight satisfying one-weight weak type (p, q) inequalities when 0<p≠q< ∞, and discuss the equivalence between the weak type (p, q) inequality and the strong type (p, q) inequality when p≠q.