Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T00:24:25.314Z Has data issue: false hasContentIssue false

A multiplier inclusion theorem on product domains

Published online by Cambridge University Press:  20 June 2019

Odysseas Bakas*
Affiliation:
Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this note it is shown that the class of all multipliers from the d-parameter Hardy space $H_{{\rm prod}}^1 ({\open T}^d)$ to L2 (𝕋d) is properly contained in the class of all multipliers from L logd/2L (𝕋d) to L2(𝕋d).

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © Edinburgh Mathematical Society 2019

References

1.Bakas, O., Variants of the inequalities of Paley and Zygmund, J. Fourier Anal. Appl., to appear, https://doi.org/10.1007/s00041-018-9605-7.Google Scholar
2.Bañuelos, R. and Moore, C. N., Probabilistic behavior of harmonic functions, Progress in Mathematics, Volume 175 (Birkhäuser, Basel, 1999).Google Scholar
3.Bilyk, D., Roth's orthogonal function method in discrepancy theory and some new connections, in A panorama of discrepancy theory, Lecture Notes in Mathematics, Volume 2107, pp. 71158 (Springer, Cham, 2014).Google Scholar
4.Bonami, A., Étude des coefficients de Fourier des fonctions de L p(G), Ann. Inst. Fourier (Grenoble), 20(2) (1970), 335402.Google Scholar
5.Bourgain, J., Brezis, H. and Mironescu, P., Limiting embedding theorems for W s,p when s↑1 and applications, J. Anal. Math. 87 (2002), 77101.Google Scholar
6.Chang, S.-Y.A., Wilson, J. M. and Wolff, T. H., Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv. 60(2) (1985), 217246.Google Scholar
7.Demeter, C., Di Plinio, F., Logarithmic L p bounds for maximal directional singular integrals in the plane, J. Geom. Anal. 24(1) (2014), 375416.Google Scholar
8.Fefferman, R., Beijing lectures in harmonic analysis, Annals of Mathematics Studies, Volume 112, pp. 47130 (Princeton University Press, Princeton, NJ, 1986).Google Scholar
9.Fefferman, R. and Pipher, J., Multiparameter operators and sharp weighted inequalities, Amer. J. Math. 119(2) (1997), 337369.Google Scholar
10.Grafakos, L., Classical Fourier analysis, 3rd edn, Graduate Texts in Mathematics, Volume 249 (Springer, New York, 2014).Google Scholar
11.Grafakos, L. and Kalton, N. J., The Marcinkiewicz multiplier condition for bilinear operators, Studia Math. 146(2) (2001), 115156.Google Scholar
12.Jessen, B., Marcinkiewicz, J. and Zygmund, A., Note on the differentiability of multiple integrals, Fund. Math. 25(1) (1935), 217234.Google Scholar
13.Moore, C. N., Some applications of Cauchy integrals on curves, PhD Thesis, University of California, LA, 1986.Google Scholar
14.Oberlin, D. M., Two multiplier theorems for H 1(U 2), Proc. Edinburgh Math. Soc. (2) 22(1) (1979), 4347.Google Scholar
15.Pipher, J., Bounded double square functions, Ann. Inst. Fourier (Grenoble), 36(2) (1986), 6982.Google Scholar
16.Pisier, G., Ensembles de Sidon et processus gaussiens, C. R. Acad. Sci. Paris Sér. A-B 286(15) (1978), A671A674.Google Scholar
17.Pisier, G., Sur l'espace de Banach des séries de Fourier aléatoires presque sûrement continues. Séminaire sur la Géométrie des Espaces de Banach (1977–1978), Exp. No. 17–18, École Polytechnique, Palaiseau, 1978.Google Scholar
18.Rudin, W., Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203227.Google Scholar
19.Seeger, A. and Trebels, W., Low regularity classes and entropy numbers, Arch. Math. (Basel) 92(2) (2009), 147157.Google Scholar
20.Zygmund, A., Trigonometric series, Volumes I, II (Cambridge University Press, Cambridge, 2002).Google Scholar