Article contents
Modular correspondences on X(11)
Published online by Cambridge University Press: 20 January 2009
Abstract
In this paper, we show how to give a geometric interpretation of the modular correspondence T3 on the modular curve X(11) of level 11 using projective geometry. We use Klein's theorem that X(11) is isomorphic to the nodal curve of the Hessian of the cubic threefold Λ defined by V2W + W2X + X2Y + Y2Z + Z2V = 0 in P4(C) and geometry which we learned from a paper of W. L. Edge. We show that the correspondence T3 is essentially the correspondence which associates to a point p of the curve X(11) the four points where the singular locus of the polar quadric of p with respect to Λ meets X(11). Our control of the geometry is good enough to enable us to compute the eigenvalues of T3 acting on the cohomology of X(11). This is the first example of an explicit geometric description of a modular correspondence without valence. The results of this article will be used in subsequent articles to associate two new abelian varieties to a cubic threefold, to desingularize the Hessian of a cubic threefold and to study self-conjugate polygons formed by the quadrisecants of the nodal curve of the Hessian.
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 35 , Issue 3 , October 1992 , pp. 427 - 435
- Copyright
- Copyright © Edinburgh Mathematical Society 1992
References
REFERENCES
- 1
- Cited by